您当前的位置:首页 > IT编程 > python
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Python 敏感词过滤的实现示例

51自学网 2021-10-30 22:16:51
  python
这篇教程Python 敏感词过滤的实现示例写得很实用,希望能帮到您。

 一个简单的实现

主要是通过循环和replace的方式进行敏感词的替换

class NaiveFilter():    '''Filter Messages from keywords    very simple filter implementation    >>> f = NaiveFilter()    >>> f.parse("filepath")    >>> f.filter("hello sexy baby")    hello **** baby    '''    def __init__(self):        self.keywords = set([])    def parse(self, path):        for keyword in open(path):            self.keywords.add(keyword.strip().decode('utf-8').lower())    def filter(self, message, repl="*"):        message = str(message).lower()        for kw in self.keywords:            message = message.replace(kw, repl)        return message

使用BSF(宽度优先搜索)进行实现

对于搜索查找进行了优化,对于英语单词,直接进行了按词索引字典查找。对于其他语言模式,我们采用逐字符查找匹配的一种模式。

BFS:宽度优先搜索方式

class BSFilter:    '''Filter Messages from keywords    Use Back Sorted Mapping to reduce replacement times    >>> f = BSFilter()    >>> f.add("sexy")    >>> f.filter("hello sexy baby")    hello **** baby    '''    def __init__(self):        self.keywords = []        self.kwsets = set([])        self.bsdict = defaultdict(set)        self.pat_en = re.compile(r'^[0-9a-zA-Z]+$')  # english phrase or not    def add(self, keyword):        if not isinstance(keyword, str):            keyword = keyword.decode('utf-8')        keyword = keyword.lower()        if keyword not in self.kwsets:            self.keywords.append(keyword)            self.kwsets.add(keyword)            index = len(self.keywords) - 1            for word in keyword.split():                if self.pat_en.search(word):                    self.bsdict[word].add(index)                else:                    for char in word:                        self.bsdict[char].add(index)    def parse(self, path):        with open(path, "r") as f:            for keyword in f:                self.add(keyword.strip())    def filter(self, message, repl="*"):        if not isinstance(message, str):            message = message.decode('utf-8')        message = message.lower()        for word in message.split():            if self.pat_en.search(word):                for index in self.bsdict[word]:                    message = message.replace(self.keywords[index], repl)            else:                for char in word:                    for index in self.bsdict[char]:                        message = message.replace(self.keywords[index], repl)        return message

使用DFA(Deterministic Finite Automaton)进行实现

DFA即Deterministic Finite Automaton,也就是确定有穷自动机。
使用了嵌套的字典来实现。

class DFAFilter():    '''Filter Messages from keywords    Use DFA to keep algorithm perform constantly    >>> f = DFAFilter()    >>> f.add("sexy")    >>> f.filter("hello sexy baby")    hello **** baby    '''    def __init__(self):        self.keyword_chains = {}        self.delimit = '/x00'    def add(self, keyword):        if not isinstance(keyword, str):            keyword = keyword.decode('utf-8')        keyword = keyword.lower()        chars = keyword.strip()        if not chars:            return        level = self.keyword_chains        for i in range(len(chars)):            if chars[i] in level:                level = level[chars[i]]            else:                if not isinstance(level, dict):                    break                for j in range(i, len(chars)):                    level[chars[j]] = {}                    last_level, last_char = level, chars[j]                    level = level[chars[j]]                last_level[last_char] = {self.delimit: 0}                break        if i == len(chars) - 1:            level[self.delimit] = 0    def parse(self, path):        with open(path,encoding='UTF-8') as f:            for keyword in f:                self.add(keyword.strip())    def filter(self, message, repl="*"):        if not isinstance(message, str):            message = message.decode('utf-8')        message = message.lower()        ret = []        start = 0        while start < len(message):            level = self.keyword_chains            step_ins = 0            for char in message[start:]:                if char in level:                    step_ins += 1                    if self.delimit not in level[char]:                        level = level[char]                    else:                        ret.append(repl * step_ins)                        start += step_ins - 1                        break                else:                    ret.append(message[start])                    break            else:                ret.append(message[start])            start += 1        return ''.join(ret)

到此这篇关于Python 敏感词过滤的实现示例的文章就介绍到这了,更多相关Python 敏感词过滤内容请搜索51zixue.net以前的文章或继续浏览下面的相关文章希望大家以后多多支持51zixue.net!


超详细讲解python正则表达式
Python多线程实现模拟火车站售票
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。