您当前的位置:首页 > IT编程 > python
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:OpenCV结合selenium实现滑块验证码

51自学网 2021-10-30 22:23:14
  python
这篇教程OpenCV结合selenium实现滑块验证码写得很实用,希望能帮到您。

本次案例使用OpenCV和selenium来解决一下滑块验证码

先说一下思路:

  • 弹出滑块验证码后使用selenium元素截图将验证码整个背景图截取出来
  • 将需要滑动的小图单独截取出来,最好将小图与背景图顶部的像素距离获取到,这样可以将背景图上下多余的边框截取掉
  • 使用OpenCV将背景图和小图进行灰度处理,并对小图再次进行二值化全局阈值,这样就可以利用OpenCV在背景图中找到小图所在的位置
  • 用OpenCV获取到相差的距离后利用selenium的鼠标拖动方法进行拖拉至终点。

详细步骤:

先获取验证码背景图,selenium浏览器对象中使用screenshot方法可以将指定的元素图片截取出来

import osfrom selenium import webdriverbrowser = webdriver.Chrome()browser.get("https://www.toutiao.com/c/user/token/MS4wLjABAAAA4EKNlqVeNTTuEdWn0VytNS8cdODKTsNNwLTxOnigzZtclro2Kylvway5mTyTUKvz/")save_path = os.path.join(os.path.expanduser('~'), "Desktop", "background.png")browser.find_element_by_id("element_id_name").screenshot(save_path)

截取后的验证码背景图和需要滑动的小图   如:

再将小图与背景图顶部的像素距离获取到,指的是下面图中红边的高度:

如果HTML元素中小图是单独存在时,那么它的高度在会定义在页面元素中,使用selenium页面元素对象的value_of_css_property方法可以获取到像素距离。

获取这个是因为要把背景图的上下两边多余部分进行切除,从而保留关键的图像部位,能够大幅度提高识别率。

element_object = browser.find_element_by_xpath("xpath_element")px = element_object.value_of_css_property("top")

接下来就要对图像进行灰度处理:

import numpyimport cv2def make_threshold(img):    """全局阈值    将图片二值化,去除噪点,让其黑白分明"""    x = numpy.ones(img.shape, numpy.uint8) * 255    y = img - x    result, thresh = cv2.threshold(y, 127, 255, cv2.THRESH_BINARY_INV)    # 将二值化后的结果返回    return threshclass ComputeDistance:    """获取需要滑动的距离    将验证码背景大图和需要滑动的小图进行处理,先在大图中找到相似的小图位置,再获取对应的像素偏移量"""    def __init__(self, Background_path: str, image_to_move: str, offset_top_px: int):        """        :param Background_path: 验证码背景大图        :param image_to_move: 需要滑动的小图        :param offset_top_px: 小图距离在大图上的顶部边距(像素偏移量)        """        self.Background_img = cv2.imread(Background_path)        self.offset_px = offset_top_px        self.show_img = show_img        small_img_data = cv2.imread(image_to_move, cv2.IMREAD_UNCHANGED)        # 得到一个改变维度为50的乘以值        scaleX = 50 / small_img_data.shape[1]        # 使用最近邻插值法缩放,让xy乘以scaleX,得到缩放后shape为50x50的图片        self.tpl_img = cv2.resize(small_img_data, (0, 0), fx=scaleX, fy=scaleX)        self.Background_cutting = None    def tpl_op(self):        # 将小图转换为灰色        tpl_gray = cv2.cvtColor(self.tpl_img, cv2.COLOR_BGR2GRAY)        h, w = tpl_gray.shape        # 将背景图转换为灰色        # Background_gray = cv2.cvtColor(self.Background_img, cv2.COLOR_BGR2GRAY)        Background_gray = cv2.cvtColor(self.Background_cutting, cv2.COLOR_BGR2GRAY)        # 得到二值化后的小图        threshold_img = make_threshold(tpl_gray)        # 将小图与大图进行模板匹配,找到所对应的位置        result = cv2.matchTemplate(Background_gray, threshold_img, cv2.TM_CCOEFF_NORMED)        min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)        # 左上角位置        top_left = (max_loc[0] - 5, max_loc[1] + self.offset_px)        # 右下角位置        bottom_right = (top_left[0] + w, top_left[1] + h)        # 在源颜色大图中画出小图需要移动到的终点位置        """rectangle(图片源数据, 左上角, 右下角, 颜色, 画笔厚度)"""        cv2.rectangle(self.Background_img, top_left, bottom_right, (0, 0, 255), 2)    def cutting_background(self):        """切割图片的上下边框"""        height = self.tpl_img.shape[0]        # 将大图中上下多余部分去除,如: Background_img[40:110, :]        self.Background_cutting = self.Background_img[self.offset_px - 10: self.offset_px + height + 10, :]    def run(self):        # 如果小图的长度与大图的长度一致则不用将大图进行切割,可以将self.cutting_background()注释掉        self.cutting_background()        return self.tpl_op()if __name__ == '__main__':    image_path1 = "背景图路径"    image_path2 = "小图路径"    distance_px = "像素距离"    main = ComputeDistance(image_path1, image_path2, distance_px)    main.run()

上面代码可以返回小图到凹点的距离,现在我们可以看一下灰度处理中的图片样子:

得到距离后还要对这个距离数字进行处理一下,要让它拆分成若干个小数,这么做的目的是在拖动的时候不能一下拖动到终点,

要模仿人类的手速缓缓向前行驶,不然很明显是机器在操控。

比如到终点的距离为100,那么要把它转为 [8, 6, 11, 10, 3, 6, 3, -2, 4, 0, 15, 1, 9, 6, -2, 4, 1, -2, 15, 6, -2] 类似的,列表中的数加起来正好为100.

最简单的转换:

def handle_distance(distance):    """将直线距离转为缓慢的轨迹"""    import random    slow_distance = []    while sum(slow_distance) <= distance:        slow_distance.append(random.randint(-2, 15))    if sum(slow_distance) != distance:        slow_distance.append(distance - sum(slow_distance))    return slow_distance

有了到终点的距离,接下来就开始拖动吧:

import timefrom random import randintfrom selenium.webdriver.common.action_chains import ActionChainsdef move_slider(website, slider, track, **kwargs):    """将滑块移动到终点位置    :param website: selenium页面对象    :param slider: selenium页面中滑块元素对象    :param track: 到终点所需的距离    """    name = kwargs.get('name', '滑块')    try:        if track[0] > 200:            return track[0]        # 点击滑块元素并拖拽        ActionChains(website).click_and_hold(slider).perform()        time.sleep(0.15)        for i in track:            # 随机上下浮动鼠标            ActionChains(website).move_by_offset(xoffset=i, yoffset=randint(-2, 2)).perform()        # 释放元素        time.sleep(1)        ActionChains(website).release(slider).perform()        time.sleep(1)        # 随机拿开鼠标        ActionChains(website).move_by_offset(xoffset=randint(200, 300), yoffset=randint(200, 300)).perform()        print(f'[网页] 拖拽 {name}')        return True    except Exception as e:        print(f'[网页] 拖拽 {name} 失败 {e}')

教程结束,让我们结合上面代码做一个案例吧。

访问今日头条某博主的主页,直接打开主页的链接会出现验证码。

下面代码 使用pip安装好相关依赖库后可直接运行:

调用ComputeDistance类时,参数 show_img=True 可以在拖动验证码前进行展示背景图识别终点后的区域在哪里, 如:

distance_obj = ComputeDistance(background_path, small_path, px, show_img=True)

OK,下面为案例代码: 

import osimport timeimport requestsimport cv2import numpyfrom random import randintfrom selenium import webdriverfrom selenium.webdriver.common.action_chains import ActionChainsdef show_image(img_array, name='img', resize_flag=False):    """展示图片"""    maxHeight = 540    maxWidth = 960    scaleX = maxWidth / img_array.shape[1]    scaleY = maxHeight / img_array.shape[0]    scale = min(scaleX, scaleY)    if resize_flag and scale < 1:        img_array = cv2.resize(img_array, (0, 0), fx=scale, fy=scale)    cv2.imshow(name, img_array)    cv2.waitKey(0)    cv2.destroyWindow(name)def make_threshold(img):    """全局阈值    将图片二值化,去除噪点,让其黑白分明"""    x = numpy.ones(img.shape, numpy.uint8) * 255    y = img - x    result, thresh = cv2.threshold(y, 127, 255, cv2.THRESH_BINARY_INV)    # 将二值化后的结果返回    return threshdef move_slider(website, slider, track, **kwargs):    """将滑块移动到终点位置    :param website: selenium页面对象    :param slider: selenium页面中滑块元素对象    :param track: 到终点所需的距离    """    name = kwargs.get('name', '滑块')    try:        if track[0] > 200:            return track[0]        # 点击滑块元素并拖拽        ActionChains(website).click_and_hold(slider).perform()        time.sleep(0.15)        for i in track:            # 随机上下浮动鼠标            ActionChains(website).move_by_offset(xoffset=i, yoffset=randint(-2, 2)).perform()        # 释放元素        time.sleep(1)        ActionChains(website).release(slider).perform()        time.sleep(1)        # 随机拿开鼠标        ActionChains(website).move_by_offset(xoffset=randint(200, 300), yoffset=randint(200, 300)).perform()        print(f'[网页] 拖拽 {name}')        return True    except Exception as e:        print(f'[网页] 拖拽 {name} 失败 {e}')class ComputeDistance:    """获取需要滑动的距离    将验证码背景大图和需要滑动的小图进行处理,先在大图中找到相似的小图位置,再获取对应的像素偏移量"""    def __init__(self, Background_path: str, image_to_move: str, offset_top_px: int, show_img=False):        """        :param Background_path: 验证码背景大图        :param image_to_move: 需要滑动的小图        :param offset_top_px: 小图距离在大图上的顶部边距(像素偏移量)        :param show_img: 是否展示图片        """        self.Background_img = cv2.imread(Background_path)        self.offset_px = offset_top_px        self.show_img = show_img        small_img_data = cv2.imread(image_to_move, cv2.IMREAD_UNCHANGED)        # 得到一个改变维度为50的乘以值        scaleX = 50 / small_img_data.shape[1]        # 使用最近邻插值法缩放,让xy乘以scaleX,得到缩放后shape为50x50的图片        self.tpl_img = cv2.resize(small_img_data, (0, 0), fx=scaleX, fy=scaleX)        self.Background_cutting = None    def show(self, img):        if self.show_img:            show_image(img)    def tpl_op(self):        # 将小图转换为灰色        tpl_gray = cv2.cvtColor(self.tpl_img, cv2.COLOR_BGR2GRAY)        h, w = tpl_gray.shape        # 将背景图转换为灰色        # Background_gray = cv2.cvtColor(self.Background_img, cv2.COLOR_BGR2GRAY)        Background_gray = cv2.cvtColor(self.Background_cutting, cv2.COLOR_BGR2GRAY)        # 得到二值化后的小图        threshold_img = make_threshold(tpl_gray)        # 将小图与大图进行模板匹配,找到所对应的位置        result = cv2.matchTemplate(Background_gray, threshold_img, cv2.TM_CCOEFF_NORMED)        min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)        # 左上角位置        top_left = (max_loc[0] - 5, max_loc[1] + self.offset_px)        # 右下角位置        bottom_right = (top_left[0] + w, top_left[1] + h)        # 在源颜色大图中画出小图需要移动到的终点位置        """rectangle(图片源数据, 左上角, 右下角, 颜色, 画笔厚度)"""        cv2.rectangle(self.Background_img, top_left, bottom_right, (0, 0, 255), 2)        if self.show_img:            show_image(self.Background_img)        return top_left    def cutting_background(self):        """切割图片的上下边框"""        height = self.tpl_img.shape[0]        # 将大图中上下多余部分去除,如: Background_img[40:110, :]        self.Background_cutting = self.Background_img[self.offset_px - 10: self.offset_px + height + 10, :]    def run(self):        # 如果小图的长度与大图的长度一致则不用将大图进行切割,可以将self.cutting_background()注释掉        self.cutting_background()        return self.tpl_op()class TodayNews(object):    def __init__(self):        self.url = "https://www.toutiao.com/c/user/token/" /                   "MS4wLjABAAAA4EKNlqVeNTTuEdWn0VytNS8cdODKTsNNwLTxOnigzZtclro2Kylvway5mTyTUKvz/"        self.process_folder = os.path.join(os.path.expanduser('~'), "Desktop", "today_news")        self.background_path = os.path.join(self.process_folder, "background.png")        self.small_path = os.path.join(self.process_folder, "small.png")        self.small_px = None        self.xpath = {}        self.browser = None    def check_file_exist(self):        """检查流程目录是否存在"""        if not os.path.isdir(self.process_folder):            os.mkdir(self.process_folder)    def start_browser(self):        """启动浏览器"""        self.browser = webdriver.Chrome()        self.browser.maximize_window()    def close_browser(self):        self.browser.quit()    def wait_element_loaded(self, xpath: str, timeout=10, close_browser=True):        """等待页面元素加载完成        :param xpath: xpath表达式        :param timeout: 最长等待超时时间        :param close_browser: 元素等待超时后是否关闭浏览器        :return: Boolean        """        now_time = int(time.time())        while int(time.time()) - now_time < timeout:            # noinspection PyBroadException            try:                element = self.browser.find_element_by_xpath(xpath)                if element:                    return True                time.sleep(1)            except Exception:                pass        else:            if close_browser:                self.close_browser()            # print("查找页面元素失败,如果不存在网络问题请尝试修改xpath表达式")            return False    def add_page_element(self):        self.xpath['background_img'] = '//div[@role="dialog"]/div[2]/img[1]'        self.xpath['small_img'] = '//div[@role="dialog"]/div[2]/img[2]'        self.xpath['slider_button'] = '//div[@id="secsdk-captcha-drag-wrapper"]/div[2]'    def process_main(self):        """处理页面内容"""        self.browser.get(self.url)        for _ in range(10):            if self.wait_element_loaded(self.xpath['background_img'], timeout=5, close_browser=False):                time.sleep(1)                # 截图                self.browser.find_element_by_xpath(self.xpath['background_img']).screenshot(self.background_path)                small_img = self.browser.find_element_by_xpath(self.xpath['small_img'])                # 获取小图片的URL链接                small_url = small_img.get_attribute("src")                # 获取小图片距离背景图顶部的像素距离                self.small_px = small_img.value_of_css_property("top").replace("px", "").split(".")[0]                response = requests.get(small_url)                if response.ok:                    with open(self.small_path, "wb") as file:                        file.write(response.content)                time.sleep(1)                # 如果没滑动成功则刷新页面重试                if not self.process_slider():                    self.browser.refresh()                    continue            else:                break    @staticmethod    def handle_distance(distance):        """将直线距离转为缓慢的轨迹"""        import random        slow_distance = []        while sum(slow_distance) <= distance:            slow_distance.append(random.randint(-2, 15))        if sum(slow_distance) != distance:            slow_distance.append(distance - sum(slow_distance))        return slow_distance    def process_slider(self):        """处理滑块验证码"""        distance_obj = ComputeDistance(self.background_path, self.small_path, int(self.small_px), show_img=False)        # 获取移动所需的距离        distance = distance_obj.run()        track = self.handle_distance(distance[0])        track.append(-2)        slider_element = self.browser.find_element_by_xpath(self.xpath['slider_button'])        move_slider(self.browser, slider_element, track)        time.sleep(2)        # 如果滑动完成则返回True        if not self.wait_element_loaded(self.xpath['slider_button'], timeout=2, close_browser=False):            return True        else:            return False    def run(self):        self.check_file_exist()        self.start_browser()        self.add_page_element()        self.process_main()        # self.close_browser()if __name__ == '__main__':    main = TodayNews()    main.run()

到此这篇关于OpenCV结合selenium实现滑块验证码的文章就介绍到这了,更多相关OpenCV selenium滑块验证码内容请搜索51zixue.net以前的文章或继续浏览下面的相关文章希望大家以后多多支持51zixue.net!


python使用pandas按照行数分割表格
macOS M1(Apple Silicon)安装配置Conda环境的具体实现
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。