您当前的位置:首页 > IT编程 > python
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:python实现CSF地面点滤波算法原理解析

51自学网 2021-10-30 22:24:38
  python
这篇教程python实现CSF地面点滤波算法原理解析写得很实用,希望能帮到您。

一、算法原理

布料模拟滤波处理流程:
1)利用点云滤波算法或者点云处理软件滤除异常点;
2)将激光雷达点云倒置;
3)设置模拟布料,设置布料网格分辨率 G R GR GR,确定模拟粒子数。布料的位置设置在点云最高点以上;
4)将布料模拟点和雷达点投影到水平面,为每个布料模拟点找到最相邻的激光点的高度值,将高度值设置为 I H V IHV IHV;
5)布料例子设置为可移动,布料粒子首先受到重力作用,当粒子高度 C H V CHV CHV小于 I H V IHV IHV时,将粒子高度设置为 I H V IHV IHV;粒子设置为不可移动;
6)计算布料粒子之间的内力作用,根据设置的布料刚性参数,调整布料粒子之间的相对位置;
7)重复进行5)和6)计算,迭代次数达到设置的最大迭代次数;
8)计算激光雷达点与对应布料模拟点的距离,距离小于阈值标记为地面点,距离大于阈值标记为非地面点。

点云地面点滤波(Cloth Simulation Filter, CSF)“布料”滤波算法介绍

二、读取las点云

参考链接: python读取las
1、GitHub: laspy
2、基础教程:Laspy: Documentation
3、安装:pip install laspy
4、使用example:

import laspy#============读取las格式的点云===========inFile = laspy.file.File(r"40m1.las", mode='r') # 读取点云print('X,Y,Z',inFile.x,inFile.y,inFile.z) # 输出点云坐标print('点云个数:',len(inFile)) #读取点云个数#============保存点云为las文件===========h = inFile.headeroutFile = laspy.file.File('666.las', mode = "w", header=h)points = inFile #对点云进行的相关操作outFile.points = pointsoutFile.close() #关闭文件完成保存

三、算法源码

1、算法细节:CSF
2、源码获取:https://github.com/jianboqi/CSF
3、源码编译:下载源代码。在python文件夹下:
python setup.py build
python setup.py install
4、读取las并可视化算法结果

import laspyimport CSFimport numpy as npimport open3d as o3d#============读取las文件=============inFile = laspy.file.File(r"40m1.las", mode='r') # read a las filepoints = inFile.pointsxyz = np.vstack((inFile.x, inFile.y, inFile.z)).transpose() # extract x, y, z and put into a list#============布料模拟滤波============csf = CSF.CSF()# 参数设置csf.params.bSloopSmooth = False    #粒子设置为不可移动csf.params.cloth_resolution = 0.1  #布料网格分辨率csf.params.rigidness = 3  #布料刚性参数csf.params.time_step = 0.65csf.params.class_threshold = 0.03 #点云与布料模拟点的距离阈值csf.params.interations = 500      #最大迭代次数# more details about parameter: http://ramm.bnu.edu.cn/projects/CSF/download/csf.setPointCloud(xyz)ground = CSF.VecInt()  # 地面点索引列表non_ground = CSF.VecInt() # 非地面点索引列表csf.do_filtering(ground, non_ground) # 执行滤波#============保存为las文件==========outFile = laspy.file.File(r"non_ground.las",                          mode='w', header=inFile.header)outFile.points = points[non_ground] # 提取非地面点保存到lasoutFile.close() # 关闭文件夹a=xyz[ground]b=xyz[non_ground]#=============可视化===============def view_cloud(a, b):    pcd = o3d.geometry.PointCloud()    # =====numpy转point=======    pcd.points = o3d.utility.Vector3dVector(a)    pcd1 = o3d.geometry.PointCloud()    pcd1.points = o3d.utility.Vector3dVector(b)    #=======自定义颜色========    pcd.paint_uniform_color([0, 1, 0])    pcd1.paint_uniform_color([1, 0, 0])    o3d.visualization.draw_geometries([pcd, pcd1],window_name='提取结果')    o3d.visualization.draw_geometries([pcd1],window_name='非地面点')    o3d.visualization.draw_geometries([pcd],window_name='地面点')view_cloud(a,b)

5、读取pcd文件并可视化结果

import open3d as o3dimport CSFimport numpy as nppc = o3d.io.read_point_cloud("数据//100m1.pcd")xyz = np.asarray(pc.points)csf = CSF.CSF()# prameter settingscsf.params.bSloopSmooth = Falsecsf.params.cloth_resolution = 0.1csf.params.rigidness = 3csf.params.time_step = 0.65csf.params.class_threshold = 0.03csf.params.interations = 500# more details about parameter: http://ramm.bnu.edu.cn/projects/CSF/download/csf.setPointCloud(xyz)ground = CSF.VecInt()  # a list to indicate the index of ground points after calculationnon_ground = CSF.VecInt() # a list to indicate the index of non-ground points after calculationcsf.do_filtering(ground, non_ground) # do actual filtering.# o3d.io.write_point_cloud("trans_of_source.pcd", non_ground)#保存点云a=xyz[ground]b=xyz[non_ground]def view_cloud(a, b):    pcd = o3d.geometry.PointCloud()    # From numpy to Open3D    pcd.points = o3d.utility.Vector3dVector(a)    pcd1 = o3d.geometry.PointCloud()    # From numpy to Open3D    pcd1.points = o3d.utility.Vector3dVector(b)    pcd.paint_uniform_color([0, 1, 0])    pcd1.paint_uniform_color([1, 0, 0])    o3d.visualization.draw_geometries([pcd, pcd1],window_name='提取结果')    o3d.visualization.draw_geometries([pcd1],window_name='非地面点')    o3d.visualization.draw_geometries([pcd],window_name='地面点')view_cloud(a,b)

四、结果展示

五、CloudCompare实现

1、加载点云数据,点击Plugins中的CSF Filter功能

2、弹出如下窗口:



 图中:Cloth resolution:是指用于覆盖地形的布的网格大小(单位与点云的单位相同)。你设置的布分辨率越大,你得到的DTM就越粗糙;Max iterations:是指地形仿真的最大迭代次数。500对大多数场景来说都足够了。Classification threshold:是指根据点与模拟地形之间的距离,将点云划分为地面和非地面部分的阈值。0.5适用于大多数场景
  这里的网格分辨率和距离阈值最小只能设置为10cm,地面10cm的范围默认是地面点,精确度不如自己代码实现中的高。
3、最后得到的结果:

可以看出,非地面点中不能提取到路缘石。

到此这篇关于python实现CSF地面点滤波的文章就介绍到这了,更多相关python地面点滤波内容请搜索51zixue.net以前的文章或继续浏览下面的相关文章希望大家以后多多支持51zixue.net!


Anaconda配置各版本Pytorch的实现
Python 中的Sympy详细使用
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。