这篇教程Python Pandas工具绘制数据图使用教程写得很实用,希望能帮到您。
背景介绍Pandas的DataFrame和Series在Matplotlib基础上封装了一个简易的绘图函数,使得数据处理过程中方便可视化查看结果。
折线图import pandas as pdimport numpy as npimport matplotlib.pyplot as pltdata=np.random.randn(5,2)*10df=pd.DataFrame(np.abs(data),index=[1,2,3,4,5],columns=[1,2])df.plot()plt.show() 
条形图import pandas as pdimport numpy as npimport matplotlib.pyplot as pltdata=np.random.randn(5,2)*10df=pd.DataFrame(np.abs(data),index=[1,2,3,4,5],columns=[1,2])df.plot(kind='bar')plt.show() 
水平条形图import pandas as pdimport numpy as npimport matplotlib.pyplot as pltdata=np.random.randn(5,2)*10df=pd.DataFrame(np.abs(data),index=[1,2,3,4,5],columns=[1,2])df.plot(kind='barh')plt.show() 
堆积图import pandas as pdimport numpy as npimport matplotlib.pyplot as pltdata=np.random.randn(5,2)*10df=pd.DataFrame(np.abs(data),index=[1,2,3,4,5],columns=[1,2])df.plot(kind='bar',stacked=True)plt.show() 
import pandas as pdimport numpy as npimport matplotlib.pyplot as pltdata=np.random.randn(5,2)*10df=pd.DataFrame(np.abs(data),index=[1,2,3,4,5],columns=[1,2])df.plot(kind='barh',stacked=True)plt.show() 
散点图数据通常是一些点的集合 常用来绘制各种相关性,适合研究不同变量间的关系 - x:x坐标位置
- y:y坐标位置
- s:散点的大小
- c:散点颜色
import pandas as pdimport numpy as npimport matplotlib.pyplot as pltdata=np.random.randn(5,2)*10df=pd.DataFrame(np.abs(data),index=[1,2,3,4,5],columns=['A','B'])df.plot(kind='scatter',x='A',y='B',s=df.A*100,c='red')plt.show() 
饼图import pandas as pdimport numpy as npimport matplotlib.pyplot as pltdf=pd.Series(3*np.random.rand(4),index=['a','b','c','d'])df.plot.pie(figsize=(6,6))plt.show() 
蜂巢图体现数据出现的次数 import pandas as pdimport numpy as npimport matplotlib.pyplot as pltdf=pd.DataFrame(np.random.randn(1000,2),columns=['a','b'])df.plot.hexbin(x='a',y='b',sharex=False,gridsize=30)plt.show() 
箱线图基于最小值、上四分位、中位数、下四分位和最大值5个数值特征展示数据分布的标准方式,可以看出数据是否具有对称性,适用于展示一组数据的分布情况 import pandas as pdimport numpy as npimport matplotlib.pyplot as pltdf=pd.DataFrame(np.random.randn(1000,2),columns=['a','b'])df.plot(y=df.columns,kind='box',vert=False)plt.show() 
绘制子图subplots:默认False 若每列绘制子图就为True layout:子图布局 figsize:画布大小 import pandas as pdimport numpy as npimport matplotlib.pyplot as pltdf=pd.DataFrame(np.random.randn(5,2),columns=['a','b'])df.plot(subplots=True,layout=(2,3),figsize=(10,10),kind='bar')plt.show() 
以上就是Python Pandas工具绘制数据图使用教程的详细内容,更多关于Python Pandas 绘制图的资料请关注51zixue.net其它相关文章! Python Python 可视化matplotlib模块基础知识 |