您当前的位置:首页 > IT编程 > python
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:如何在python中实现ECDSA你知道吗

51自学网 2022-02-21 10:47:39
  python
这篇教程如何在python中实现ECDSA你知道吗写得很实用,希望能帮到您。
import siximport timeit#查找任何特定代码执行的确切时间from ecdsa.curves import curves
#定义do函数,计算时间def do(setup_statements, statement):    # extracted from timeit.py    t = timeit.Timer(stmt=statement, setup="/n".join(setup_statements))    # determine number so that 0.2 <= total time < 2.0    for i in range(1, 10):        number = 10 ** i #**为次方        x = t.timeit(number)        if x >= 0.2:            break    return x / number

NIST为数字测试套件关于NIST详解

GF§ (素数域)曲线,密钥长度为192、224、256、384和521bit

OpenSSL工具(openssl ecparam -list_curves)所知道的这些曲线的 "简称 "是:prime192v1secp224r1prime256v1secp384r1secp521r1。它包括比特币使用的256位曲线secp256k1。它还支持160到512位的Brainpool曲线的常规(非扭曲)变体。这些曲线的 "简称 "是:BrainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1, brainpoolP320r1, brainpoolP384r1, brainpoolP512r1。少数来自SEC标准的小曲线也包括在内(主要是为了加快库的测试),它们是:secp112r1, secp112r2, secp128r1, 和secp160r1。没有包括其他的曲线,但要增加对更多素数域的曲线的支持并不难。

#不是很懂 sep=":",unit="s",form=".5f",form_inv=".2f",prnt_form = (    "{name:>16}{sep:1} {siglen:>6} {keygen:>9{form}}{unit:1} "    "{keygen_inv:>9{form_inv}} {sign:>9{form}}{unit:1} "    "{sign_inv:>9{form_inv}} {verify:>9{form}}{unit:1} "    "{verify_inv:>9{form_inv}} {verify_single:>13{form}}{unit:1} "    "{verify_single_inv:>14{form_inv}}")print(    prnt_form.format(        siglen="siglen",        keygen="keygen",        keygen_inv="keygen/s",        sign="sign",        sign_inv="sign/s",        verify="verify",        verify_inv="verify/s",        verify_single="no PC verify",        verify_single_inv="no PC verify/s",        name="",        sep="",        unit="",        form="",        form_inv="",    ))for curve in [i.name for i in curves]:    S1 = "import six; from ecdsa import SigningKey, %s" % curve    S2 = "sk = SigningKey.generate(%s)" % curve #产生私钥    S3 = "msg = six.b('msg')" #消息    S4 = "sig = sk.sign(msg)" #签名    S5 = "vk = sk.get_verifying_key()"#公钥由私钥得出  get_verifying_key()函数    S6 = "vk.precompute()"#不懂    S7 = "vk.verify(sig, msg)"#用公钥验证签名    # 我们碰巧知道.generate()也在计算验证密钥,这是最耗时的部分。如果将代码改为懒惰地计算vk,我们就需要将这个基准改为在S5上循环,而不是在S2上。    keygen = do([S1], S2)    sign = do([S1, S2, S3], S4)    verf = do([S1, S2, S3, S4, S5, S6], S7)    verf_single = do([S1, S2, S3, S4, S5], S7)    import ecdsa    c = getattr(ecdsa, curve)#从名字上看获取属性值    sig = ecdsa.SigningKey.generate(c).sign(six.b("msg"))    #密钥对(keygen)、签署数据(sign)、验证这些签名(verify)、共享秘密(ecdh)以及在没有特定密钥预计算的情况下验证签名(no PC verify)、原始签名的大小(通常是签名可以被编码的最小方式)也在siglen栏中提供    print(        prnt_form.format(            name=curve,#所有的曲线            sep=":",            siglen=len(sig),            unit="s",            keygen=keygen,            keygen_inv=1.0 / keygen,            sign=sign,            sign_inv=1.0 / sign,            verify=verf,            verify_inv=1.0 / verf,            verify_single=verf_single,            verify_single_inv=1.0 / verf_single,            form=".5f",#小数点后面为5位            form_inv=".2f",#小数点后面为2位        )    )
print("")

ED25519和Cureve5519

ecdh_form = "{name:>16}{sep:1} {ecdh:>9{form}}{unit:1} {ecdh_inv:>9{form_inv}}"print(    ecdh_form.format(        ecdh="ecdh",        ecdh_inv="ecdh/s",        name="",        sep="",        unit="",        form="",        form_inv="",    ))for curve in [i.name for i in curves]:    if curve == "Ed25519" or curve == "Ed448":        continue    S1 = "from ecdsa import SigningKey, ECDH, {0}".format(curve)    S2 = "our = SigningKey.generate({0})".format(curve)#私钥    S3 = "remote = SigningKey.generate({0}).verifying_key".format(curve)#公钥    S4 = "ecdh = ECDH(private_key=our, public_key=remote)"    S5 = "ecdh.generate_sharedsecret_bytes()"#产生共享密钥    ecdh = do([S1, S2, S3, S4], S5)    print(        ecdh_form.format(            name=curve,            sep=":",            unit="s",            form=".5f",            form_inv=".2f",            ecdh=ecdh,            ecdh_inv=1.0 / ecdh,        )    )

在这里插入图片描述

在这里插入图片描述

from ecdsa import SigningKeysk = SigningKey.generate() # uses NIST192p生成私钥vk = sk.verifying_key#在私钥的基础上生成公钥signature = sk.sign(b"message")#用私钥对消息进行签名assert vk.verify(signature, b"message")#用公钥去验证。assert为一断言函数:不满足条件直接触发异常忙不执行接下来的代码,括号中为condition
from ecdsa import SigningKey, NIST384p#384位NIST素域椭圆曲线,其中私钥/公钥都与特定的曲线相关联,更长的曲线更安全,但时间长,密钥和签名也长sk = SigningKey.generate(curve=NIST384p)vk = sk.verifying_keysignature = sk.sign(b"message")assert vk.verify(signature, b"message")
#将签名密钥(私钥)序列化成不同的格式。from ecdsa import SigningKey, NIST384psk = SigningKey.generate(curve=NIST384p)sk_string = sk.to_string()#最短的调用,然后再重新创建私钥。to_string():将括号内的数字转化为字符串,实际返回的类型bytessk2 = SigningKey.from_string(sk_string, curve=NIST384p)#重新创建私钥,第一个参数是我们要处理的字符,如果点编码无效或不在指定曲线上,from_string()将引发MalformedPointErrorprint(sk_string.hex())print(sk2.to_string().hex())
from ecdsa import SigningKey, NIST384psk = SigningKey.generate(curve=NIST384p)sk_pem = sk.to_pem()#sk.to_pem()和sk.to_der()将把签名密钥序列化为OpenSSL使用的相同格式sk2 = SigningKey.from_pem(sk_pem)#SigningKey.from_pem()/.from_der()将撤销这种序列化。这些格式包括了曲线名称,所以你不需要向反序列化器传递曲线标识符。如果文件是畸形的,from_der()和from_pem()将引发UnexpectedDER或MalformedPointError。# sk and sk2 are the same key
from ecdsa import SigningKey, VerifyingKey, NIST384psk = SigningKey.generate(curve=NIST384p)vk = sk.verifying_keyvk_string = vk.to_string()#公钥可以用同样的方式进行序列化vk2 = VerifyingKey.from_string(vk_string, curve=NIST384p)# vk and vk2 are the same key
from ecdsa import SigningKey, VerifyingKey, NIST384psk = SigningKey.generate(curve=NIST384p)vk = sk.verifying_keyvk_pem = vk.to_pem()vk2 = VerifyingKey.from_pem(vk_pem)# vk and vk2 are the same key
import osfrom ecdsa import NIST384p, SigningKeyfrom ecdsa.util import randrange_from_seed__trytryagain#产生随机数def make_key(seed):  secexp = randrange_from_seed__trytryagain(seed, NIST384p.order)  return SigningKey.from_secret_exponent(secexp, curve=NIST384p)seed = os.urandom(NIST384p.baselen) # or other starting point,返回一个适合加密的比特串sk1a = make_key(seed)sk1b = make_key(seed)# note: sk1a and sk1b are the same keyassert sk1a.to_string() == sk1b.to_string()sk2 = make_key(b"2-"+seed)  # different key  b为比特assert sk1a.to_string() != sk2.to_string()from ecdsa import SigningKey, NIST384psk = SigningKey.generate(curve=NIST384p)vk = sk.verifying_keyvk.precompute()signature = sk.sign(b"message")assert vk.verify(signature, b"message")
# openssl ecparam -name prime256v1 -genkey -out sk.pem# openssl ec -in sk.pem -pubout -out vk.pem# echo "data for signing" > data# openssl dgst -sha256 -sign sk.pem -out data.sig data# openssl dgst -sha256 -verify vk.pem -signature data.sig data# openssl dgst -sha256 -prverify sk.pem -signature data.sig data#OpenSSL 使用 PEM 文件格式存储证书和密钥。PEM 实质上是 Base64 编码的二进制内容import hashlib#from ecdsa import SigningKey, VerifyingKeyfrom ecdsa.util import sigencode_der, sigdecode_der#从ecdsa.util写入和读取签名with open("vk.pem") as f:#公钥文件   vk = VerifyingKey.from_pem(f.read())with open("data", "rb") as f:#open()为读取模式,with语句直接调用close方法,r为读模式,w/wb为写模式,rb模式打开二进制文件,消息data   data = f.read()with open("data.sig", "rb") as f:#消息签名可读模式   signature = f.read()assert vk.verify(signature, data, hashlib.sha256, sigdecode=sigdecode_der)#公钥验证签名,with open("sk.pem") as f:#私钥文件   sk = SigningKey.from_pem(f.read(), hashlib.sha256)new_signature = sk.sign_deterministic(data, sigencode=sigencode_der)#用私钥签名生成一个新的签名with open("data.sig2", "wb") as f:#写模式   f.write(new_signature)
# openssl dgst -sha256 -verify vk.pem -signature data.sig2 data#如果需要与OpenSSL 1.0.0或更早的版本兼容,可以使用ecdsa.util中的sigencode_string和sigdecode_string来分别写入和读取签名。from ecdsa import SigningKey, VerifyingKeywith open("sk.pem") as f:    sk = SigningKey.from_pem(f.read())with open("sk.pem", "wb") as f:    f.write(sk.to_pem())with open("vk.pem") as f:    vk = VerifyingKey.from_pem(f.read())with open("vk.pem", "wb") as f:    f.write(vk.to_pem())
#ecdsa.util.PRNG 工具在这里很方便:它需要一个种子并从中产生一个强的伪随机流。#os.urandom的函数作为entropy=参数来做不同的事情#ECDSA的签名生成也需要一个随机数,而且每个签名都必须使用不同的随机数(两次使用相同的数字会立即暴露出私人签名密钥)。# sk.sign()方法需要一个entropy=参数,其行为与SigningKey.generate(entropy=)相同。from ecdsa.util import PRNGfrom ecdsa import SigningKeyrng1 = PRNG(b"seed")sk1 = SigningKey.generate(entropy=rng1)rng2 = PRNG(b"seed")sk2 = SigningKey.generate(entropy=rng2)# sk1 and sk2 are the same key
#如果你调用SigningKey.sign_deterministic(data)而不是.sign(data),代码将生成一个确定性的签名,而不是随机的。# 这使用RFC6979中的算法来安全地生成一个唯一的K值,该值来自于私钥和被签名的信息。每次你用相同的密钥签署相同的信息时,你将得到相同的签名(使用相同的k)。#创建一个NIST521p密钥对from ecdsa import SigningKey, NIST521psk = SigningKey.generate(curve=NIST521p)vk = sk.verifying_key#从一个主种子创建三个独立的签名密钥from ecdsa import NIST192p, SigningKeyfrom ecdsa.util import randrange_from_seed__trytryagaindef make_key_from_seed(seed, curve=NIST192p):    secexp = randrange_from_seed__trytryagain(seed, curve.order)    return SigningKey.from_secret_exponent(secexp, curve)sk1 = make_key_from_seed("1:%s" % seed)sk2 = make_key_from_seed("2:%s" % seed)sk3 = make_key_from_seed("3:%s" % seed)#从磁盘上加载一个验证密钥,并使用十六进制编码以未压缩和压缩的格式打印出来(在X9.62和SEC1标准中定义)。from ecdsa import VerifyingKeywith open("public.pem") as f:#加载验证密钥    vk = VerifyingKey.from_pem(f.read())print("uncompressed: {0}".format(vk.to_string("uncompressed").hex()))print("compressed: {0}".format(vk.to_string("compressed").hex()))#从压缩格式的十六进制字符串中加载验证密钥,以未压缩的格式输出。from ecdsa import VerifyingKey, NIST256pcomp_str = '022799c0d0ee09772fdd337d4f28dc155581951d07082fb19a38aa396b67e77759'vk = VerifyingKey.from_string(bytearray.fromhex(comp_str), curve=NIST256p)print(vk.to_string("uncompressed").hex())#与远程方进行ECDH密钥交换。from ecdsa import ECDH, NIST256pecdh = ECDH(curve=NIST256p)ecdh.generate_private_key()local_public_key = ecdh.get_public_key()#send `local_public_key` to remote party and receive `remote_public_key` from remote partywith open("remote_public_key.pem") as e:    remote_public_key = e.read()ecdh.load_received_public_key_pem(remote_public_key)secret = ecdh.generate_sharedsecret_bytes()

总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注51zixue.net的更多内容!


Python
Python实现Word的读写改操作
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。