您当前的位置:首页 > IT编程 > python
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Python数据挖掘中常用的五种AutoEDA 工具总结

51自学网 2022-02-21 10:48:00
  python
这篇教程Python数据挖掘中常用的五种AutoEDA 工具总结写得很实用,希望能帮到您。

我们能否使用一些自动化工具代替人来完成数据分析的过程呢,现有一些成熟的 AutoEDA 工具可以一定程度上完成上述过程。本文中,我将盘点常见的 AutoEDA 工具,欢迎收藏学习,喜欢点赞支持,文末提供技术交流群,欢迎畅聊。

1、Pandas Profiling

https://pandas-profiling.github.io/pandas-profiling/docs/master/index.html

Pandas Profiling是款比较成熟的工具,可以直接传入DataFrame即可完成分析过程,将结果展示为HTML格式,同时分析功能也比较强大。

  • 功能:字段类型分析、变量分布分析、相关性分析、缺失值分析、重复行分析
  • 耗时:较少

图片

2、AutoViz

https://github.com/AutoViML/AutoViz

AutoViz是款美观的数据分析工具,在进行可视化的同时将结果保存为图片格式。

  • 功能:相关性分析、数值变量箱线图、数值变量分布图
  • 耗时:较多

图片

3、Dataprep

https://dataprep.ai/

Dataprep是款比较灵活也比较强大的工具,也是笔者最喜欢的。它可以指定列进行分析,同时也可以在Notebook中进行交互式分析。

  • 功能:字段类型分析、变量分布分析、相关性分析、缺失值分析、交互式分析。
  • 耗时:较多

图片

4、SweetViz

https://github.com/fbdesignpro/sweetviz

SweetViz是款强大的数据分析工具,可以很好的分析训练集和测试集,以及目标标签与特征之间的关系。

  • 功能:数据集对比分析、字段类型分析、变量分布分析、目标变量分析
  • 耗时:中等

图片

5、D-Tale

https://github.com/man-group/dtale

D-Tale是款功能最为强大的数据分析工具,对单变量的分析过程支持比较好。

  • 功能:字段类型分析、变量分布分析、相关性分析、缺失值分析、交互式分析。
  • 耗时:中等

图片

技术交流

欢迎转载、收藏、有所收获点赞支持一下!

在这里插入图片描述

到此这篇关于Python数据挖掘中常用的五种AutoEDA 工具总结的文章就介绍到这了,更多相关Python 数据挖掘内容请搜索51zixue.net以前的文章或继续浏览下面的相关文章希望大家以后多多支持51zixue.net!


Python 图片视频模糊化实现案例
python 提取视频中的音频工具类详解
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。