您当前的位置:首页 > IT编程 > python
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:人工智能学习PyTorch实现CNN卷积层及nn.Module类示例分析

51自学网 2022-02-21 10:48:50
  python
这篇教程人工智能学习PyTorch实现CNN卷积层及nn.Module类示例分析写得很实用,希望能帮到您。

1.CNN卷积层

通过nn.Conv2d可以设置卷积层,当然也有1d和3d。

卷积层设置完毕,将设置好的输入数据,传给layer(),即可完成一次前向运算。也可以传给layer.forward,但不推荐。

2. 池化层

池化层的核大小一般是2*2,有2种方式:

maxpooling:选择数据中最大值输出

avgpooling:计算数据的均值并输出

通过这一层可以实现降采样。

3.数据批量标准化

Batch Normalize,在计算过程中,通常输入的数据都是0-255的像素数据,不方便计算,因此可以通过nn.BatchNorm1d方法进行标准化。

标准化后,可以通过running_mean, running_var获取全局的均值和方差。

4.nn.Module类

①各类函数

Linear, ReLU, Sigmoid, Conv2d, Dropout等等

②容器功能

我们可以直接在定义自己的层的时候,把所有我们需要用到的层及相关函数放进去。使用的时候直接调用即可。

③参数管理

在这个类中可以直接生成我们需要的参数,并且自动带上梯度的需求。

④调用GPU

⑤存储和加载

训练过程中可以根据需求,比如训练到某一个点的时候达到了最优,可以将其存储。

⑥训练、测试状态切换

直接调用根节点的train, eval就可以切换。

⑦ 创建自己的层

还有其他功能,但现在还不理解,因此先不往上写了。

5.数据增强

数据增强主要用在我们数据不够用的时候,对原来的数据进行调整,从而生成新的数据。比如一张图片,我们可以对其进行翻转、旋转、大小调整、切割等操作 。导入数据的时候即可进行,具体实现方式如下。

以上就是人工智能学习PyTorch实现CNN卷积层及nn.Module类示例分析的详细内容,更多关于PyTorch中CNN及nn.Module的资料请关注51zixue.net其它相关文章!


Python根据过滤器拆分列表
人工智能学习Pytorch数据集分割及动量示例详解
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。