您当前的位置:首页 > IT编程 > python
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch |

自学教程:python

51自学网 2022-07-22 18:47:15
  python
这篇教程python写得很实用,希望能帮到您。

利用sklearn画出决策树并保存为PDF

下载Graphviz

进入官网下载并安装:

https://graphviz.gitlab.io/_pages/Download/Download_windows.html

并将下列路径配置为环境变量:

  • D:/software/Graphviz/bin

在cmd中测试:

  • dot -version

python代码

import numpy as npimport pandas as pdfrom sklearn import treeimport graphviz# x,y是sklearn中需要拟合的数据x = np.array(exam_train)y = np.array(classes_train)clf = tree.DecisionTreeClassifier(criterion='entropy', class_weight='balanced', max_depth=25)clf = clf.fit(x, y)dot_data = tree.export_graphviz(clf, out_file=None, feature_names=None, filled=True, rounded=True)  # 重要参数可定制graph = graphviz.Source(dot_data)graph.render(view=True, format="pdf", filename="decisiontree_pdf")

可以生成一张贼帅的决策树PDF:

python sklearn 决策树运用

数据形式(tree.csv)

age look income orderly targetolder ugly low yes noyoung ugly high no noyoung handsome low no noyoung handsome high yes yesyoung handsome medium yes yesyoung handsome medium no no

python源代码:

# -*- coding:utf-8*-# 将字典 转化为 sklearn 用的数据形式 数据型 矩阵from sklearn.feature_extraction import DictVectorizerimport csvfrom sklearn import preprocessingfrom sklearn import treeallElectronicsData = open('c:/pic/data/tree.csv','rb')reader = csv.reader(allElectronicsData)header = reader.next()# print header## 数据预处理featureList = []labelList = []for row in reader:    # print row[-1]    labelList.append(row[-1])    # 下面这几步的目的是为了让特征值转化成一种字典的形式,就可以调用sk-learn里面的DictVectorizer,直接将特征的类别值转化成0,1值    rowDict = {}    for i in range(1, len(row) - 1):        rowDict[header[i]] = row[i]    featureList.append(rowDict)for each in featureList:    print each# Vectorize featuresvec = DictVectorizer()dummyX = vec.fit_transform(featureList).toarray()print("dummyX:"+str(dummyX))print(vec.get_feature_names())# label的转化,直接用preprocessing的LabelBinarizer方法lb = preprocessing.LabelBinarizer()dummyY = lb.fit_transform(labelList)print("dummyY:"+str(dummyY))print("labelList:"+str(labelList))#criterion是选择决策树节点的 标准 ,这里是按照“熵”为标准,即ID3算法;默认标准是gini index,即CART算法。clf = tree.DecisionTreeClassifier()clf = clf.fit(dummyX,dummyY)print("clf:"+str(clf))# 导入相关函数,可视化决策树# 导出的结果是一个dot文件(在系统默认路劲),需要安装Graphviz才能将它住哪华为PDF或png格式# 输出的dot文件可以使用graphvize软件转为PDF,graphvize安装目录中的bin目录放入到环境变量的Path中# 使用如下命令#cmd# dot -Tpdf  c:/tree.dot -o c:/tree.pdf#下载地址:http://www.graphviz.org/Download_windows.php#生成dot文件with open("c:/tree.dot",'w') as f:    f = tree.export_graphviz(clf, feature_names= vec.get_feature_names(),out_file= f)

以上为个人经验,希望能给大家一个参考,也希望大家多多支持wanshiok.com。


Python轻量级搜索工具Whoosh的使用教程
Python实现邮件自动下载的示例详解
51自学网,即我要自学网,自学EXCEL、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。
京ICP备13026421号-1