您当前的位置:首页 > IT编程 > python
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch |

自学教程:python 留一交叉验证的实例

51自学网 2022-07-22 18:47:23
  python
这篇教程python 留一交叉验证的实例写得很实用,希望能帮到您。

python 留一交叉验证

基本原理

K折交叉验证

简单来说,K折交叉验证就是:

  • 把数据集划分成K份,取出其中一份作为测试集,另外的K - 1份作为训练集。
  • 通过训练集得到回归方程,再把测试集带入该回归方程,得到预测值。
  • 计算预测值与真实值的差值的平方,得到平方损失函数(或其他的损失函数)。
  • 重复以上过程,总共得到K个回归方程和K个损失函数,其中损失函数最小的回归方程就是最优解。

留一交叉验证

留一交叉验证是K折交叉验证的特殊情况,即:将数据集划分成N份,N为数据集总数。就是只留一个数据作为测试集,该特殊情况称为“留一交叉验证”。

代码实现

'''留一交叉验证'''import numpy as np# K折交叉验证data = [[12, 1896], [11, 1900], [11, 1904], [10.8, 1908], [10.8, 1912], [10.8, 1920], [10.6, 1924], [10.8, 1928],        [10.3, 1932], [10.3, 1936], [10.3, 1948], [10.4, 1952], [10.5, 1956], [10.2, 1960], [10.0, 1964], [9.95, 1968],        [10.14, 1972], [10.06, 1976], [10.25, 1980], [9.99, 1984], [9.92, 1988], [9.96, 1992], [9.84, 1996],        [9.87, 2000], [9.85, 2004], [9.69, 2008]]length = len(data)# 得到训练集和测试集def Get_test_train(length, data, i):    test_data = data[i]  # 测试集    train_data = data[:]    train_data.pop(i)  # 训练集    return train_data, test_data# 得到线性回归直线def Get_line(train_data):    time = []    year = []    average_year_time = 0    average_year_year = 0    for i in train_data:        time.append(i[0])        year.append(i[1])    time = np.array(time)    year = np.array(year)    average_year = sum(year) / length  # year拔    average_time = sum(time) / length  # time拔    for i in train_data:        average_year_time = average_year_time + i[0] * i[1]        average_year_year = average_year_year + i[1] ** 2    average_year_time = average_year_time / length  # (year, time)拔    average_year_year = average_year_year / length  # (year, year)拔    # 线性回归:t = w0 + w1 * x    w1 = (average_year_time - average_year * average_time) / (average_year_year - average_year * average_year)    w0 = average_time - w1 * average_year    return w0, w1# 得到损失函数def Get_loss_func(w0, w1, test_data):    time_real = test_data[0]    time_predict = eval('{} + {} * {}'.format(w0, w1, test_data[1]))    loss = (time_predict - time_real) ** 2    dic['t = {} + {}x'.format(w0, w1)] = loss    return dicif __name__ == '__main__':    dic = {}  # 存放建为回归直线,值为损失函数的字典    for i in range(length):        train_data, test_data = Get_test_train(length, data, i)        w0, w1 = Get_line(train_data)        Get_loss_func(w0, w1, test_data)        dic = Get_loss_func(w0, w1, test_data)    min_loss = min(dic.values())    best_line = [k for k, v in dic.items() if v == min_loss][0]    print('最佳回归直线:', best_line)    print('最小损失函数:', min_loss)

留一法交叉验证 Leave-One-Out Cross Validation

交叉验证法,就是把一个大的数据集分为 k 个小数据集,其中 k−1 个作为训练集,剩下的 1 11 个作为测试集,在训练和测试的时候依次选择训练集和它对应的测试集。这种方法也被叫做 k 折交叉验证法(k-fold cross validation)。最终的结果是这 k 次验证的均值。

此外,还有一种交叉验证方法就是 留一法(Leave-One-Out,简称LOO),顾名思义,就是使 k kk 等于数据集中数据的个数,每次只使用一个作为测试集,剩下的全部作为训练集,这种方法得出的结果与训练整个测试集的期望值最为接近,但是成本过于庞大。

我们用SKlearn库来实现一下LOO

from sklearn.model_selection import LeaveOneOut# 一维示例数据data_dim1 = [1, 2, 3, 4, 5]# 二维示例数据data_dim2 = [[1, 1, 1, 1],             [2, 2, 2, 2],             [3, 3, 3, 3],             [4, 4, 4, 4],             [5, 5, 5, 5]]loo = LeaveOneOut() # 实例化LOO对象# 取LOO训练、测试集数据索引for train_idx, test_idx in loo.split(data_dim1):    # train_idx 是指训练数据在总数据集上的索引位置    # test_idx 是指测试数据在总数据集上的索引位置    print("train_index: %s, test_index %s" % (train_idx, test_idx))# 取LOO训练、测试集数据值for train_idx, test_idx in loo.split(data_dim1):    # train_idx 是指训练数据在总数据集上的索引位置    # test_idx 是指测试数据在总数据集上的索引位置    train_data = [data_dim1[i] for i in train_idx]    test_data = [data_dim1[i] for i in test_idx]    print("train_data: %s, test_data %s" % (train_data, test_data))

data_dim1的输出:

train_index: [1 2 3 4], test_index [0]
train_index: [0 2 3 4], test_index [1]
train_index: [0 1 3 4], test_index [2]
train_index: [0 1 2 4], test_index [3]
train_index: [0 1 2 3], test_index [4]

train_data: [2, 3, 4, 5], test_data [1]
train_data: [1, 3, 4, 5], test_data [2]
train_data: [1, 2, 4, 5], test_data [3]
train_data: [1, 2, 3, 5], test_data [4]
train_data: [1, 2, 3, 4], test_data [5]

data_dim2的输出:

train_index: [1 2 3 4], test_index [0]
train_index: [0 2 3 4], test_index [1]
train_index: [0 1 3 4], test_index [2]
train_index: [0 1 2 4], test_index [3]
train_index: [0 1 2 3], test_index [4]

train_data: [[2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4], [5, 5, 5, 5]], test_data [[1, 1, 1, 1]]
train_data: [[1, 1, 1, 1], [3, 3, 3, 3], [4, 4, 4, 4], [5, 5, 5, 5]], test_data [[2, 2, 2, 2]]
train_data: [[1, 1, 1, 1], [2, 2, 2, 2], [4, 4, 4, 4], [5, 5, 5, 5]], test_data [[3, 3, 3, 3]]
train_data: [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [5, 5, 5, 5]], test_data [[4, 4, 4, 4]]
train_data: [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]], test_data [[5, 5, 5, 5]]

以上为个人经验,希望能给大家一个参考,也希望大家多多支持wanshiok.com。


关于opencv读取和写入路径有汉字的处理方式
pandas
51自学网,即我要自学网,自学EXCEL、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。
京ICP备13026421号-1