这篇教程机器学习数据预处理之独热One-Hot编码及其代码详解写得很实用,希望能帮到您。
1. 为什么使用 one-hot 编码?
问题:在机器学习算法中,我们经常会遇到分类特征,例如:人的性别有男女,祖国有中国,美国,法国等。 这些特征值并不是连续的,而是离散的,无序的。
目的:如果要作为机器学习算法的输入,通常我们需要对其进行特征数字化。什么是特征数字化呢?例如: 性别特征:["男","女"] 祖国特征:["中国","美国,"法国"] 运动特征:["足球","篮球","羽毛球","乒乓球"]
瓶颈:假如某个样本(某个人),他的特征是["男","中国","乒乓球"] ,我们可以用 [0,0,4] 来表示,但是这样的特征处理并不能直接放入机器学习算法中。因为类别之间是无序的。
2. 什么是 one-hot 编码?
定义:独热编码即 One-Hot 编码,又称一位有效编码。其方法是使用 N位 状态寄存器来对 N个状态 进行编码,每个状态都有它独立的寄存器位,并且在任意时候,其中只有一位有效。
理解:One-Hot 编码是分类变量作为二进制向量的表示。 (1) 将分类值映射到整数值。 (2) 然后,每个整数值被表示为二进制向量,除了整数的索引之外,它都是零值,它被标记为1。
举例1:举个例子,假设我们有四个样本(行),每个样本有三个特征(列),如图: 
上述feature_1有两种可能的取值,比如是男/女,这里男用1表示,女用2表示。feature_2 和 feature_3 各有4种取值(状态)。 one-hot 编码就是保证每个样本中的单个特征只有1位处于状态1,其他的都是0。 上述状态用 one-hot 编码如下图所示: 
举例2:按照 N位状态寄存器 来 对N个状态 进行编码的原理,处理后应该是这样的 性别特征:["男","女"] (这里只有两个特征,所以 N=2): 男 => 10 女 => 01 祖国特征:["中国","美国,"法国"](N=3): 中国 => 100 美国 => 010 法国 => 001 运动特征:["足球","篮球","羽毛球","乒乓球"](N=4): 足球 => 1000 篮球 => 0100 羽毛球 => 0010 乒乓球 => 0001 所以,当一个样本为 ["男","中国","乒乓球"] 的时候,完整的特征数字化的结果为: [1,0,1,0,0,0,0,0,1] 下图可能会更好理解: 
python 代码示例: from sklearn import preprocessing enc = preprocessing.OneHotEncoder() enc.fit([[0,0,3],[1,1,0],[0,2,1],[1,0,2]]) # 训练。这里共有4个数据,3种特征 array = enc.transform([[0,1,3]]).toarray() # 测试。这里使用1个新数据来测试 print array # [[ 1 0 0 1 0 0 0 0 1]] # 独热编码结果 以上对应关系可以解释为下图: 
3. one-hot 编码优缺点?
优点:(1) 解决了 分类器不好处理离散数据 的问题。 a. 欧式空间。在回归,分类,聚类等机器学习算法中,特征之间距离计算 或 相似度计算是非常重要的,而我们常用的距离或相似度的计算都是在欧式空间的相似度计算,计算余弦相似性,基于的就是欧式空间。 b. one-hot 编码。使用 one-hot 编码,将离散特征的取值扩展到了欧式空间,离散特征的某个取值 就 对应欧式空间的某个点。将离散型特征使用 one-hot 编码,确实会让特征之间的距离计算更加合理。 (2) 在一定程度上也起到了 扩充特征 的作用。
缺点:在文本特征表示上有些缺点就非常突出了。 (1) 它是一个词袋模型,不考虑词与词之间的顺序(文本中词的顺序信息也是很重要的); (2) 它假设词与词相互独立(在大多数情况下,词与词是相互影响的); (3) 它得到的特征是离散稀疏的 (这个问题最严重)。 上述第3点展开: (1) 为什么得到的特征是离散稀疏的? 例如,如果将世界所有城市名称作为语料库的话,那这个向量会过于稀疏,并且会造成维度灾难。如下: 杭州 [0,0,0,0,0,0,0,1,0,……,0,0,0,0,0,0,0] 上海 [0,0,0,0,1,0,0,0,0,……,0,0,0,0,0,0,0] 宁波 [0,0,0,1,0,0,0,0,0,……,0,0,0,0,0,0,0] 北京 [0,0,0,0,0,0,0,0,0,……,1,0,0,0,0,0,0] 在语料库中,杭州、上海、宁波、北京各对应一个向量,向量中只有一个值为1,其余都为0。 (2)能不能把词向量的维度变小呢? a) Dristributed representation: 可以解决 One hot representation 的问题,它的思路是: 1. 通过训练,将每个词都映射到一个较短的词向量上来。 2. 所有的这些 词向量 就构成了 向量空间, 3. 进而可以用 普通的统计学的方法 来研究词与词之间的关系。 这个较短的词向量维度是多大呢?这个一般需要我们在训练时自己来指定。 b) 举例: 1. 比如将词汇表里的词用 "Royalty", "Masculinity", "Femininity" 和 "Age" 4个维度来表示,King 这个词对应的词向量可能是 (0.99,0.99,0.05,0.7)。 
2. 在实际情况中,并不能对词向量的每个维度做一个很好的解释。 3.将king这个词从一个可能非常稀疏的向量坐在的空间,映射到现在这个 四维向量 所在的空间,必须满足以下性质: (1)这个映射是单射; (2)映射之后的向量 不会丢失之前的 那种向量 所含的信息 。 4.这个过程称为word embedding(词嵌入),即将高维词向量嵌入到一个低维空间。如图: 
5.经过我们一系列的降维神操作,有了用 representation 表示的较短的词向量,我们就可以较容易的分析词之间的关系了,比如我们将词的维度降维到 2维,有一个有趣的研究表明,用下图的词向量表示我们的词时,我们可以发现: 

6. 出现这种现象的原因是,我们得到最后的词向量的训练过程中引入了词的上下文。举例: 
想到得到 "learning" 的词向量,但训练过程中,你同时考虑了它左右的上下文,那么就可以使 "learning" 带有语义信息了。通过这种操作,我们可以得到近义词,甚至 cat 和它的复数 cats 的向量极其相近。 -------------------------------------------------------------------- 参考博客: 通俗理解word2vec 机器学习:数据预处理之独热编码(One-Hot) 到此这篇关于机器学习数据预处理之独热One-Hot编码及其代码详解的文章就介绍到这了,更多相关one-hot 编码内容请搜索wanshiok.com以前的文章或继续浏览下面的相关文章希望大家以后多多支持wanshiok.com! 新版selenium4.0 + Python使用详解 Python实现计算AUC的示例代码 |