您当前的位置:首页 > IT编程 > C++
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:C++ AbstractLinAlgPack类代码示例

51自学网 2021-06-03 12:04:57
  C++
这篇教程C++ AbstractLinAlgPack类代码示例写得很实用,希望能帮到您。

本文整理汇总了C++中AbstractLinAlgPack的典型用法代码示例。如果您正苦于以下问题:C++ AbstractLinAlgPack类的具体用法?C++ AbstractLinAlgPack怎么用?C++ AbstractLinAlgPack使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。

在下文中一共展示了AbstractLinAlgPack类的29个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C++代码示例。

示例1: Mp_StM

void LinAlgOpPack::Mp_StM(  DMatrixSlice* C, value_type a  ,const MatrixOp& B, BLAS_Cpp::Transp B_trans  ){  using AbstractLinAlgPack::VectorSpace;  using AbstractLinAlgPack::VectorDenseEncap;  using AbstractLinAlgPack::MatrixOpGetGMS;  using AbstractLinAlgPack::MatrixDenseEncap;  const MatrixOpGetGMS    *B_get_gms = dynamic_cast<const MatrixOpGetGMS*>(&B);  if(B_get_gms) {    DenseLinAlgPack::Mp_StM( C, a, MatrixDenseEncap(*B_get_gms)(), B_trans );		  }  else {    const size_type num_cols = C->cols();    VectorSpace::multi_vec_mut_ptr_t      B_mv = ( B_trans == BLAS_Cpp::no_trans           ? B.space_cols() : B.space_rows()          ).create_members(num_cols);    assign(B_mv.get(),B,B_trans);    for( size_type j = 1; j <= num_cols; ++j ) {      DenseLinAlgPack::Vp_StV(&C->col(j),a,VectorDenseEncap(*B_mv->col(j))());    }  }}
开发者ID:00liujj,项目名称:trilinos,代码行数:26,


示例2: check_in_bounds

bool VariableBoundsTester::check_in_bounds(  std::ostream* out, bool print_all_warnings, bool print_vectors  ,const Vector& xL, const char xL_name[]  ,const Vector& xU, const char xU_name[]  ,const Vector& x,  const char x_name[]  ){  using AbstractLinAlgPack::max_near_feas_step;  if(out)    *out      << "/n*** Checking that variables are in bounds/n";  VectorSpace::vec_mut_ptr_t zero = x.space().create_member(0.0);  std::pair<value_type,value_type>    u = max_near_feas_step( x, *zero, xL, xU, warning_tol() );  if(u.first < 0.0) {    if(out)      *out << "/nWarning! the variables " << xL_name << " <= " << x_name << " <= " << xU_name        << " are out of bounds by more than warning_tol = "	<< warning_tol() << "/n";    u = max_near_feas_step( x, *zero, xL, xU, error_tol() );    if(u.first < 0.0) {      if(out)        *out << "/nError! the variables " << xL_name << " <= " << x_name << " <= " << xU_name          << " are out of bounds by more than error_tol = " << error_tol() << "/n";      return false;    }  }  return true;}
开发者ID:haripandey,项目名称:trilinos,代码行数:30,


示例3: Vp_StPtMtV

void LinAlgOpPack::Vp_StPtMtV(  DVectorSlice* y, value_type a  ,const GenPermMatrixSlice& P, BLAS_Cpp::Transp P_trans  ,const MatrixOp& M, BLAS_Cpp::Transp M_trans  ,const DVectorSlice& x, value_type b  ){  namespace mmp = MemMngPack;  using BLAS_Cpp::no_trans;  using AbstractLinAlgPack::VectorMutableDense;  using AbstractLinAlgPack::VectorDenseMutableEncap;  using AbstractLinAlgPack::Vp_StPtMtV;  VectorSpace::space_ptr_t    ay_space = ( M_trans == no_trans ? M.space_cols() : M.space_rows() ).space(P,P_trans);  VectorSpace::vec_mut_ptr_t    ay =  ( ay_space.get()        ? ay_space->create_member()        : Teuchos::rcp_implicit_cast<VectorMutable>(          Teuchos::rcp(new VectorMutableDense(BLAS_Cpp::rows(P.rows(),P.cols(),P_trans)))          ) ),    ax = ( M_trans == no_trans ? M.space_rows() : M.space_cols() ).create_member();  (VectorDenseMutableEncap(*ay))() = *y;  (VectorDenseMutableEncap(*ax))() = x;  Vp_StPtMtV( ay.get(), a, P, P_trans, M, M_trans, *ax, b );  *y = VectorDenseMutableEncap(*ay)();}
开发者ID:00liujj,项目名称:trilinos,代码行数:26,


示例4: Vp_StMtV

void LinAlgOpPack::Vp_StMtV(  DVectorSlice* y, value_type a, const MatrixOp& M  ,BLAS_Cpp::Transp M_trans, const SpVectorSlice& x, value_type b  ){  using BLAS_Cpp::no_trans;  using AbstractLinAlgPack::VectorDenseMutableEncap;  VectorSpace::vec_mut_ptr_t    ay = ( M_trans == no_trans ? M.space_cols() : M.space_rows() ).create_member();  (VectorDenseMutableEncap(*ay))() = *y;  AbstractLinAlgPack::Vp_StMtV( ay.get(), a, M, M_trans, x, b );  *y = VectorDenseMutableEncap(*ay)();}
开发者ID:00liujj,项目名称:trilinos,代码行数:13,


示例5: V_InvMtV

void LinAlgOpPack::V_InvMtV(  DVector* y, const MatrixOpNonsing& M  ,BLAS_Cpp::Transp M_trans, const DVectorSlice& x  ){  using BLAS_Cpp::trans;  using AbstractLinAlgPack::VectorDenseMutableEncap;  VectorSpace::vec_mut_ptr_t    ay = ( M_trans == trans ? M.space_cols() : M.space_rows() ).create_member(),    ax = ( M_trans == trans ? M.space_rows() : M.space_cols() ).create_member();  (VectorDenseMutableEncap(*ax))() = x;  AbstractLinAlgPack::V_InvMtV( ay.get(), M, M_trans, *ax );  *y = VectorDenseMutableEncap(*ay)();}
开发者ID:00liujj,项目名称:trilinos,代码行数:14,


示例6: phi_

value_type MeritFuncCalc1DQuadratic::operator()(value_type alpha) const{  using AbstractLinAlgPack::Vp_StV;  *x_ = *d_[0];  value_type alpha_i = alpha;  for( size_type i = 1; i <= p_; ++i, alpha_i *= alpha ) {    Vp_StV( x_, alpha_i, *d_[i] );  }  return phi_( *x_ );}
开发者ID:00liujj,项目名称:trilinos,代码行数:10,


示例7: imp_calc_f

void ExampleNLPObjGrad::imp_calc_f(const Vector& x, bool newx  , const ZeroOrderInfo& zero_order_info) const{  using AbstractLinAlgPack::dot;  assert_is_initialized();  f(); // assert f is set  TEUCHOS_TEST_FOR_EXCEPTION( n() != x.dim(), std::length_error, "ExampleNLPObjGrad::imp_calc_f(...)"  );  // f(x) = (obj_scale/2) * sum( x(i)^2, for i = 1..n )  *zero_order_info.f = obj_scale_ / 2.0 * dot(x,x);}
开发者ID:00liujj,项目名称:trilinos,代码行数:10,


示例8: Vp_StMtV

void MatrixHessianRelaxed::Vp_StMtV(    DVectorSlice* y, value_type a, BLAS_Cpp::Transp M_trans  , const SpVectorSlice& x, value_type b ) const{  using BLAS_Cpp::no_trans;  using BLAS_Cpp::trans;  using AbstractLinAlgPack::Vp_StMtV;  //  // y = b*y + a * M * x  //   //   = b*y + a * [ H  0    ] * [ x1 ]  //               [ 0  bigM ]   [ x2 ]  //                 // =>                //                 // y1 = b*y1 + a*H*x1  //   // y2 = b*y2 + bigM * x2  //  LinAlgOpPack::Vp_MtV_assert_sizes(y->size(),rows(),cols(),M_trans,x.size());  DVectorSlice    y1 = (*y)(1,n_);  value_type    &y2 = (*y)(n_+1);  const SpVectorSlice    x1 = x(1,n_);  const SpVectorSlice::element_type    *x2_ele = x.lookup_element(n_+1);  const value_type    x2 = x2_ele ? x2_ele->value() : 0.0;  // y1 = b*y1 + a*H*x1  Vp_StMtV( &y1, a, *H_, no_trans, x1, b );  // y2 = b*y2 + bigM * x2  if( b == 0.0 )    y2 = bigM_ * x2;  else    y2 = b*y2 + bigM_ * x2;  }
开发者ID:00liujj,项目名称:trilinos,代码行数:42,


示例9: Vp_StMtV

void MultiVectorMutableCols::Vp_StMtV(  VectorMutable* y, value_type a, BLAS_Cpp::Transp M_trans  ,const SpVectorSlice& x, value_type b  ) const{  using AbstractLinAlgPack::dot;  // y = b*y  LinAlgOpPack::Vt_S(y,b);  if( M_trans == BLAS_Cpp::no_trans ) {    //    // y += a*M*x    //    // =>    //    // y += a * x(1) * M(:,1) + a * x(2) * M(:,2) + ...    //    SpVectorSlice::difference_type o = x.offset();    for( SpVectorSlice::const_iterator itr = x.begin(); itr != x.end(); ++itr ) {      const size_type j = itr->index() + o;      LinAlgOpPack::Vp_StV( y, a * itr->value(), *col_vecs_[j-1] );    }  }  else {    //    // y += a*M'*x    //    // =>    //    // y(1) += a M(:,1)*x    // y(2) += a M(:,2)*x    // ...    //    for( size_type j = 1; j <= col_vecs_.size(); ++j )      y->set_ele(        j        ,y->get_ele(j) + a * dot(*col_vecs_[j-1],x)        );  }}
开发者ID:haripandey,项目名称:trilinos,代码行数:41,


示例10: do_step

bool ReducedHessianExactStd_Step::do_step(    Algorithm& _algo, poss_type step_poss, IterationPack::EDoStepType type  , poss_type assoc_step_poss){  using Teuchos::dyn_cast;  using DenseLinAlgPack::nonconst_sym;  using AbstractLinAlgPack::Mp_StMtMtM;  typedef AbstractLinAlgPack::MatrixSymDenseInitialize	MatrixSymDenseInitialize;  typedef AbstractLinAlgPack::MatrixSymOp			MatrixSymOp;  using ConstrainedOptPack::NLPSecondOrder;  NLPAlgo	&algo	= rsqp_algo(_algo);  NLPAlgoState	&s		= algo.rsqp_state();  NLPSecondOrder#ifdef _WINDOWS        &nlp	= dynamic_cast<NLPSecondOrder&>(algo.nlp());#else        &nlp	= dyn_cast<NLPSecondOrder>(algo.nlp());#endif  MatrixSymOp    *HL_sym_op = dynamic_cast<MatrixSymOp*>(&s.HL().get_k(0));  EJournalOutputLevel olevel = algo.algo_cntr().journal_output_level();  std::ostream& out = algo.track().journal_out();  // print step header.  if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) {    using IterationPack::print_algorithm_step;    print_algorithm_step( algo, step_poss, type, assoc_step_poss, out );  }  // problem size  size_type	n		= nlp.n(),        r		= nlp.r(),        nind	= n - r;  // Compute HL first (You may want to move this into its own step later?)  if( !s.lambda().updated_k(-1) ) {    if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) {      out << "Initializing lambda_km1 = nlp.get_lambda_init ... /n";    }    nlp.get_init_lagrange_mult( &s.lambda().set_k(-1).v(), NULL );    if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) {      out << "||lambda_km1||inf = " << s.lambda().get_k(-1).norm_inf() << std::endl;    }    if( static_cast<int>(olevel) >= static_cast<int>(PRINT_VECTORS) ) {      out << "lambda_km1 = /n" << s.lambda().get_k(-1)();    }  }  nlp.set_HL(	HL_sym_op );  nlp.calc_HL( s.x().get_k(0)(), s.lambda().get_k(-1)(), false );  if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ITERATION_QUANTITIES) ) {    s.HL().get_k(0).output( out << "/nHL_k = /n" );  }  // If rHL has already been updated for this iteration then just leave it.  if( !s.rHL().updated_k(0) ) {    if( !HL_sym_op ) {      std::ostringstream omsg;      omsg        << "ReducedHessianExactStd_Step::do_step(...) : Error, "        << "The matrix HL with the concrete type "        << typeName(s.HL().get_k(0)) << " does not support the "        << "MatrixSymOp iterface";      throw std::logic_error( omsg.str() );    }		    MatrixSymDenseInitialize      *rHL_sym_init = dynamic_cast<MatrixSymDenseInitialize*>(&s.rHL().set_k(0));    if( !rHL_sym_init ) {      std::ostringstream omsg;      omsg        << "ReducedHessianExactStd_Step::do_step(...) : Error, "        << "The matrix rHL with the concrete type "        << typeName(s.rHL().get_k(0)) << " does not support the "        << "MatrixSymDenseInitialize iterface";      throw std::logic_error( omsg.str() );    }		    // Compute the dense reduced Hessian    DMatrix rHL_sym_store(nind,nind);    DMatrixSliceSym rHL_sym(rHL_sym_store(),BLAS_Cpp::lower);    Mp_StMtMtM( &rHL_sym, 1.0, MatrixSymOp::DUMMY_ARG, *HL_sym_op          , s.Z().get_k(0), BLAS_Cpp::no_trans, 0.0 );    if( (int)olevel >= (int)PRINT_ITERATION_QUANTITIES ) {      out << "/nLower triangular partion of dense reduced Hessian (ignore nonzeros above diagonal):/nrHL_dense = /n" << rHL_sym_store();     }      // Set the reduced Hessain    rHL_sym_init->initialize( rHL_sym );    if( (int)olevel >= (int)PRINT_ITERATION_QUANTITIES ) {      s.rHL().get_k(0).output( out << "/nrHL_k = /n" );    }  }//.........这里部分代码省略.........
开发者ID:00liujj,项目名称:trilinos,代码行数:101,


示例11: do_step

bool TangentialStepWithInequStd_Step::do_step(  Algorithm& _algo, poss_type step_poss, IterationPack::EDoStepType type  ,poss_type assoc_step_poss  ){  using Teuchos::RCP;  using Teuchos::dyn_cast;  using ::fabs;  using LinAlgOpPack::Vt_S;  using LinAlgOpPack::V_VpV;  using LinAlgOpPack::V_VmV;  using LinAlgOpPack::Vp_StV;  using LinAlgOpPack::Vp_V;  using LinAlgOpPack::V_StV;  using LinAlgOpPack::V_MtV;//	using ConstrainedOptPack::min_abs;  using AbstractLinAlgPack::max_near_feas_step;  typedef VectorMutable::vec_mut_ptr_t   vec_mut_ptr_t;  NLPAlgo &algo = rsqp_algo(_algo);  NLPAlgoState &s = algo.rsqp_state();  EJournalOutputLevel olevel = algo.algo_cntr().journal_output_level();  EJournalOutputLevel ns_olevel = algo.algo_cntr().null_space_journal_output_level();  std::ostream &out = algo.track().journal_out();  //const bool check_results = algo.algo_cntr().check_results();  // print step header.  if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) {    using IterationPack::print_algorithm_step;    print_algorithm_step( algo, step_poss, type, assoc_step_poss, out );  }  // problem dimensions  const size_type    //n  = algo.nlp().n(),    m  = algo.nlp().m(),    r  = s.equ_decomp().size();  // Get the iteration quantity container objects  IterQuantityAccess<value_type>    &alpha_iq = s.alpha(),    &zeta_iq  = s.zeta(),    &eta_iq   = s.eta();  IterQuantityAccess<VectorMutable>    &dl_iq      = dl_iq_(s),    &du_iq      = du_iq_(s),    &nu_iq      = s.nu(),    *c_iq       = m > 0  ? &s.c()       : NULL,    *lambda_iq  = m > 0  ? &s.lambda()  : NULL,    &rGf_iq     = s.rGf(),    &w_iq       = s.w(),    &qp_grad_iq = s.qp_grad(),    &py_iq      = s.py(),    &pz_iq      = s.pz(),    &Ypy_iq     = s.Ypy(),    &Zpz_iq     = s.Zpz();  IterQuantityAccess<MatrixOp>    &Z_iq   = s.Z(),    //*Uz_iq  = (m > r)  ? &s.Uz() : NULL,    *Uy_iq  = (m > r)  ? &s.Uy() : NULL;  IterQuantityAccess<MatrixSymOp>    &rHL_iq = s.rHL();  IterQuantityAccess<ActSetStats>    &act_set_stats_iq = act_set_stats_(s);    // Accessed/modified/updated (just some)  VectorMutable  *Ypy_k = (m ? &Ypy_iq.get_k(0) : NULL);  const MatrixOp  &Z_k   = Z_iq.get_k(0);  VectorMutable  &pz_k  = pz_iq.set_k(0);  VectorMutable  &Zpz_k = Zpz_iq.set_k(0);  // Comupte qp_grad which is an approximation to rGf + Z'*HL*Y*py  // qp_grad = rGf  VectorMutable    &qp_grad_k = ( qp_grad_iq.set_k(0) = rGf_iq.get_k(0) );  // qp_grad += zeta * w  if( w_iq.updated_k(0) ) {    if(zeta_iq.updated_k(0))      Vp_StV( &qp_grad_k, zeta_iq.get_k(0), w_iq.get_k(0) );    else      Vp_V( &qp_grad_k, w_iq.get_k(0) );  }  //  // Set the bounds for:  //  //   dl <= Z*pz + Y*py <= du  ->  dl - Ypy <= Z*pz <= du - Ypz  vec_mut_ptr_t    bl = s.space_x().create_member(),    bu = s.space_x().create_member();  if(m) {    // bl = dl_k - Ypy_k    V_VmV( bl.get(), dl_iq.get_k(0), *Ypy_k );    // bu = du_k - Ypy_k    V_VmV( bu.get(), du_iq.get_k(0), *Ypy_k );//.........这里部分代码省略.........
开发者ID:haripandey,项目名称:trilinos,代码行数:101,


示例12: TEST_FOR_EXCEPTION

bool NLPDirectTester::finite_diff_check(  NLPDirect         *nlp  ,const Vector     &xo  ,const Vector     *xl  ,const Vector     *xu  ,const Vector     *c  ,const Vector     *Gf  ,const Vector     *py  ,const Vector     *rGf  ,const MatrixOp   *GcU  ,const MatrixOp   *D  ,const MatrixOp   *Uz  ,bool             print_all_warnings  ,std::ostream     *out  ) const{  using std::setw;  using std::endl;  using std::right;  using AbstractLinAlgPack::sum;  using AbstractLinAlgPack::dot;  using AbstractLinAlgPack::Vp_StV;  using AbstractLinAlgPack::random_vector;  using AbstractLinAlgPack::assert_print_nan_inf;  using LinAlgOpPack::V_StV;  using LinAlgOpPack::V_StMtV;  using LinAlgOpPack::Vp_MtV;  using LinAlgOpPack::M_StM;  using LinAlgOpPack::M_StMtM;  typedef VectorSpace::vec_mut_ptr_t  vec_mut_ptr_t;//  using AbstractLinAlgPack::TestingPack::CompareDenseVectors;//  using AbstractLinAlgPack::TestingPack::CompareDenseSparseMatrices;  using TestingHelperPack::update_success;  bool success = true, preformed_fd;  if(out) {    *out << std::boolalpha       << std::endl       << "*********************************************************/n"       << "*** NLPDirectTester::finite_diff_check(...) ***/n"       << "*********************************************************/n";  }  const Range1D    var_dep      = nlp->var_dep(),    var_indep    = nlp->var_indep(),    con_decomp   = nlp->con_decomp(),    con_undecomp = nlp->con_undecomp();  NLP::vec_space_ptr_t    space_x = nlp->space_x(),    space_c = nlp->space_c();  // //////////////////////////////////////////////  // Validate the input  TEST_FOR_EXCEPTION(    py && !c, std::invalid_argument    ,"NLPDirectTester::finite_diff_check(...) : "    "Error, if py!=NULL then c!=NULL must also be true!" );  const CalcFiniteDiffProd    &fd_deriv_prod = this->calc_fd_prod();  const value_type    rand_y_l = -1.0, rand_y_u = 1.0,    small_num = ::sqrt(std::numeric_limits<value_type>::epsilon());  try {  // ///////////////////////////////////////////////  // (1) Check Gf  if(Gf) {    switch( Gf_testing_method() ) {      case FD_COMPUTE_ALL: {        // Compute FDGf outright        TEST_FOR_EXCEPT(true); // ToDo: update above!        break;      }      case FD_DIRECTIONAL: {        // Compute FDGF'*y using random y's        if(out)          *out            << "/nComparing products Gf'*y with finite difference values FDGf'*y for "            << "random y's .../n";        vec_mut_ptr_t y = space_x->create_member();        value_type max_warning_viol = 0.0;        int num_warning_viol = 0;        const int num_fd_directions_used = ( num_fd_directions() > 0 ? num_fd_directions() : 1 );        for( int direc_i = 1; direc_i <= num_fd_directions_used; ++direc_i ) {          if( num_fd_directions() > 0 ) {            random_vector( rand_y_l, rand_y_u, y.get() );            if(out)              *out                << "/n****"//.........这里部分代码省略.........
开发者ID:haripandey,项目名称:trilinos,代码行数:101,


示例13: secant_update

void MatrixSymPosDefLBFGS::secant_update(  VectorMutable* s, VectorMutable* y, VectorMutable* Bs  ){  using AbstractLinAlgPack::BFGS_sTy_suff_p_d;  using AbstractLinAlgPack::dot;  using LinAlgOpPack::V_MtV;  using Teuchos::Workspace;  Teuchos::WorkspaceStore* wss = Teuchos::get_default_workspace_store().get();  assert_initialized();  // Check skipping the BFGS update  const value_type    sTy	      = dot(*s,*y);  std::ostringstream omsg;  if( !BFGS_sTy_suff_p_d(*s,*y,&sTy,&omsg,"MatrixSymPosDefLBFGS::secant_update(...)" ) ) {    throw UpdateSkippedException( omsg.str() );	  }  try {  // Update counters  if( m_bar_ == m_ ) {    // We are at the end of the storage so remove the oldest stored update    // and move updates to make room for the new update.  This has to be done for the    // the matrix to behave properly    {for( size_type k = 1; k <= m_-1; ++k ) {      S_->col(k) = S_->col(k+1);                            // Shift S.col() to the left      Y_->col(k) = Y_->col(k+1);                            // Shift Y.col() to the left      STY_.col(k)(1,m_-1) = STY_.col(k+1)(2,m_);            // Move submatrix STY(2,m-1,2,m-1) up and left      STSYTY_.col(k)(k+1,m_) = STSYTY_.col(k+1)(k+2,m_+1);  // Move triangular submatrix STS(2,m-1,2,m-1) up and left      STSYTY_.col(k+1)(1,k) = STSYTY_.col(k+2)(2,k+1);      // Move triangular submatrix YTY(2,m-1,2,m-1) up and left    }}    // ToDo: Create an abstract interface, call it MultiVectorShiftVecs, to rearrange S and Y all at once.    // This will be important for parallel performance.  }  else {    m_bar_++;  }  // Set the update vectors  *S_->col(m_bar_) = *s;  *Y_->col(m_bar_) = *y;  // /////////////////////////////////////////////////////////////////////////////////////  // Update S'Y  //  // Update the row and column m_bar  //  //	S'Y =   //  //	[	s(1)'*y(1)		...		s(1)'*y(m_bar)		...		s(1)'*y(m_bar)		]  //	[	.						.							.					] row  //	[	s(m_bar)'*y(1)	...		s(m_bar)'*y(m_bar)	...		s(m_bar)'*y(m_bar)	] m_bar  //	[	.						.							.					]  //	[	s(m_bar)'*y(1)	...		s(m_bar)'*y(m_bar)	...		s(m_bar)'*y(m_bar)	]  //  //								col m_bar  //  // Therefore we set:  //	(S'Y)(:,m_bar) =  S'*y(m_bar)  //	(S'Y)(m_bar,:) =  s(m_bar)'*Y  const multi_vec_ptr_t    S = this->S(),    Y = this->Y();  VectorSpace::vec_mut_ptr_t    t = S->space_rows().create_member();  // temporary workspace  //	(S'Y)(:,m_bar) =  S'*y(m_bar)  V_MtV( t.get(), *S, BLAS_Cpp::trans, *y );  STY_.col(m_bar_)(1,m_bar_) = VectorDenseEncap(*t)();  //	(S'Y)(m_bar,:)' =  Y'*s(m_bar)  V_MtV( t.get(), *Y, BLAS_Cpp::trans, *s );  STY_.row(m_bar_)(1,m_bar_) = VectorDenseEncap(*t)();  // /////////////////////////////////////////////////////////////////  // Update S'S  //  //	S'S =   //  //	[	s(1)'*s(1)		...		symmetric					symmetric			]  //	[	.						.							.					] row  //	[	s(m_bar)'*s(1)	...		s(m_bar)'*s(m_bar)	...		symmetric			] m_bar  //	[	.						.							.					]  //	[	s(m_bar)'*s(1)	...		s(m_bar)'*s(m_bar)	...		s(m_bar)'*s(m_bar)	]  //  //								col m_bar  //  // Here we will update the lower triangular part of S'S.  To do this we  // only need to compute:  //		t = S'*s(m_bar) = { s(m_bar)' * [ s(1),..,s(m_bar),..,s(m_bar) ]  }'  // then set the appropriate rows and columns of S'S.  Workspace<value_type>   work_ws(wss,m_bar_);  DVectorSlice                  work(&work_ws[0],work_ws.size());  // work = S'*s(m_bar)//.........这里部分代码省略.........
开发者ID:00liujj,项目名称:trilinos,代码行数:101,


示例14: do_step

bool LineSearchFullStep_Step::do_step(Algorithm& _algo  , poss_type step_poss, IterationPack::EDoStepType type, poss_type assoc_step_poss){  using AbstractLinAlgPack::Vp_StV;  using AbstractLinAlgPack::assert_print_nan_inf;  using LinAlgOpPack::V_VpV;  NLPAlgo        &algo   = rsqp_algo(_algo);  NLPAlgoState   &s      = algo.rsqp_state();  NLP            &nlp    = algo.nlp();  const size_type    m = nlp.m();  EJournalOutputLevel olevel = algo.algo_cntr().journal_output_level();  std::ostream& out = algo.track().journal_out();  // print step header.  if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) {    using IterationPack::print_algorithm_step;    print_algorithm_step( algo, step_poss, type, assoc_step_poss, out );  }    // alpha_k = 1.0  IterQuantityAccess<value_type>    &alpha_iq   = s.alpha();  if( !alpha_iq.updated_k(0) )    alpha_iq.set_k(0) = 1.0;  if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) {    out	<< "/nf_k        = " << s.f().get_k(0);    if(m)      out << "/n||c_k||inf = " << s.c().get_k(0).norm_inf();    out << "/nalpha_k    = " << alpha_iq.get_k(0) << std::endl;  }  // x_kp1 = x_k + d_k  IterQuantityAccess<VectorMutable>  &x_iq = s.x();  const Vector                       &x_k   = x_iq.get_k(0);  VectorMutable                      &x_kp1 = x_iq.set_k(+1);  x_kp1 = x_k;  Vp_StV( &x_kp1, alpha_iq.get_k(0), s.d().get_k(0) );  if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) {    out	<< "/n||x_kp1||inf   = " << s.x().get_k(+1).norm_inf() << std::endl;  }  if( static_cast<int>(olevel) >= static_cast<int>(PRINT_VECTORS) ) {    out << "/nx_kp1 =/n" << s.x().get_k(+1);  }  if(algo.algo_cntr().check_results()) {    assert_print_nan_inf(      x_kp1, "x_kp1",true      ,int(olevel) >= int(PRINT_ALGORITHM_STEPS) ? &out : NULL      );    if( nlp.num_bounded_x() ) {      if(!bounds_tester().check_in_bounds(          int(olevel) >= int(PRINT_ALGORITHM_STEPS) ? &out : NULL        , int(olevel) >= int(PRINT_VECTORS)					// print_all_warnings        , int(olevel) >= int(PRINT_ITERATION_QUANTITIES)	// print_vectors        , nlp.xl(), "xl"        , nlp.xu(), "xu"        , x_kp1, "x_kp1"        ))      {        TEST_FOR_EXCEPTION(          true, TestFailed          ,"LineSearchFullStep_Step::do_step(...) : Error, "          "the variables bounds xl <= x_k(+1) <= xu where violated!" );      }    }  }  // Calcuate f and c at the new point.  nlp.unset_quantities();  nlp.set_f( &s.f().set_k(+1) );  if(m) nlp.set_c( &s.c().set_k(+1) );  nlp.calc_f(x_kp1);  if(m) nlp.calc_c( x_kp1, false );  nlp.unset_quantities();  if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) {    out	<< "/nf_kp1        = " << s.f().get_k(+1);    if(m)      out << "/n||c_kp1||inf = " << s.c().get_k(+1).norm_inf();    out << std::endl;  }  if( m && static_cast<int>(olevel) >= static_cast<int>(PRINT_VECTORS) ) {    out << "/nc_kp1 =/n" << s.c().get_k(+1);   }  if(algo.algo_cntr().check_results()) {    assert_print_nan_inf( s.f().get_k(+1), "f(x_kp1)", true, &out );    if(m)      assert_print_nan_inf( s.c().get_k(+1), "c(x_kp1)", true, &out );  }  return true;}
开发者ID:haripandey,项目名称:trilinos,代码行数:100,


示例15: imp_calc_Gc

void ExampleNLPFirstOrder::imp_calc_Gc(    const Vector& x, bool newx, const FirstOrderInfo& first_order_info) const{    namespace rcp = MemMngPack;    using Teuchos::dyn_cast;    using AbstractLinAlgPack::Vp_S; // Should not have to do this!    const index_type    n = this->n(),    m = this->m();    const Range1D    var_dep   = this->var_dep(),    var_indep = this->var_indep();    // Get references to aggregate C and N matrices (if allocated)    MatrixOpNonsing    *C_aggr = NULL;    MatrixOp    *N_aggr = NULL;    BasisSystemComposite::get_C_N(        first_order_info.Gc, &C_aggr, &N_aggr ); // Will return NULLs if Gc is not initialized    // Allocate C and N matrix objects if not done yet!    Teuchos::RCP<MatrixOpNonsing>    C_ptr = Teuchos::null;    Teuchos::RCP<MatrixOp>    N_ptr = Teuchos::null;    if( C_aggr == NULL ) {        const VectorSpace::space_ptr_t        space_x  = this->space_x(),        space_xD = space_x->sub_space(var_dep);        C_ptr  = Teuchos::rcp(new MatrixSymDiagStd(space_xD->create_member()));        N_ptr  = Teuchos::rcp(new MatrixSymDiagStd(space_xD->create_member()));        C_aggr = C_ptr.get();        N_aggr = N_ptr.get();    }    // Get references to concreate C and N matrices    MatrixSymDiagStd    &C = dyn_cast<MatrixSymDiagStd>(*C_aggr);    MatrixSymDiagStd    &N = dyn_cast<MatrixSymDiagStd>(*N_aggr);    // Get x = [ x_D' x_I ]    Vector::vec_ptr_t    x_D = x.sub_view(var_dep),    x_I = x.sub_view(var_indep);    // Set the diagonals of C and N (this is the only computation going on here)    C.diag() = *x_I;          // C.diag = x_I - 1.0    Vp_S( &C.diag(),  -1.0 ); // ...    N.diag() = *x_D;          // N.diag = x_D - 10.0    Vp_S( &N.diag(), -10.0 ); // ...    // Initialize the matrix object Gc if not done so yet    if( C_ptr.get() != NULL ) {        BasisSystemComposite::initialize_Gc(            this->space_x(), var_dep, var_indep            ,this->space_c()            ,C_ptr, N_ptr            ,first_order_info.Gc        );    }}
开发者ID:haripandey,项目名称:trilinos,代码行数:61,


示例16: num_bounded

QPSolverStats::ESolutionTypeQPSolverRelaxedQPKWIK::imp_solve_qp(  std::ostream* out, EOutputLevel olevel, ERunTests test_what  ,const Vector& g, const MatrixSymOp& G  ,value_type etaL  ,const Vector* dL, const Vector* dU  ,const MatrixOp* E, BLAS_Cpp::Transp trans_E, const Vector* b  ,const Vector* eL, const Vector* eU  ,const MatrixOp* F, BLAS_Cpp::Transp trans_F, const Vector* f  ,value_type* obj_d  ,value_type* eta, VectorMutable* d  ,VectorMutable* nu  ,VectorMutable* mu, VectorMutable* Ed  ,VectorMutable* lambda, VectorMutable* Fd  ){  using Teuchos::dyn_cast;  using DenseLinAlgPack::nonconst_tri_ele;  using LinAlgOpPack::dot;  using LinAlgOpPack::V_StV;  using LinAlgOpPack::assign;  using LinAlgOpPack::V_StV;  using LinAlgOpPack::V_MtV;  using AbstractLinAlgPack::EtaVector;  using AbstractLinAlgPack::transVtMtV;  using AbstractLinAlgPack::num_bounded;  using ConstrainedOptPack::MatrixExtractInvCholFactor;  // /////////////////////////  // Map to QPKWIK input  // Validate that rHL is of the proper type.  const MatrixExtractInvCholFactor &cG    = dyn_cast<const MatrixExtractInvCholFactor>(G);  // Determine the number of sparse bounds on variables and inequalities.  // By default set for the dense case  const value_type inf = this->infinite_bound();  const size_type    nd              = d->dim(),    m_in            = E  ? b->dim()                  : 0,    m_eq            = F  ? f->dim()                  : 0,    nvarbounds      = dL ? num_bounded(*dL,*dU,inf)  : 0,    ninequbounds    = E  ? num_bounded(*eL,*eU,inf)  : 0,    nequalities     = F  ? f->dim()                  : 0;  // Determine if this is a QP with a structure different from the  // one just solved.    const bool same_qp_struct = (  N_ == nd && M1_ == nvarbounds && M2_ == ninequbounds && M3_ == nequalities );  /////////////////////////////////////////////////////////////////  // Set the input parameters to be sent to QPKWIKNEW  // N  N_ = nd;  // M1  M1_ = nvarbounds;  // M2  M2_ = ninequbounds;  // M3  M3_ = nequalities;  // GRAD  GRAD_ = VectorDenseEncap(g)();  // UINV_AUG  //  // UINV_AUG = [ sqrt(bigM)  0  ]  //            [ 0           L' ]  //  UINV_AUG_.resize(N_+1,N_+1);  cG.extract_inv_chol( &nonconst_tri_ele( UINV_AUG_(2,N_+1,2,N_+1), BLAS_Cpp::upper ) );  UINV_AUG_(1,1) = 1.0 / ::sqrt( NUMPARAM_[2] );  UINV_AUG_.col(1)(2,N_+1) = 0.0;  UINV_AUG_.row(1)(2,N_+1) = 0.0;  // LDUINV_AUG  LDUINV_AUG_ = UINV_AUG_.rows();  // IBND, BL , BU, A, LDA, YPY  IBND_INV_.resize( nd + m_in);  std::fill( IBND_INV_.begin(), IBND_INV_.end(), 0 ); // Initialize the zero  IBND_.resize( my_max( 1, M1_ + M2_ ) );  BL_.resize( my_max( 1, M1_ + M2_ ) );  BU_.resize( my_max( 1, M1_ + M2_ + M3_ ) );  LDA_ = my_max( 1, M2_ + M3_ );  A_.resize( LDA_, (  M2_ + M3_ > 0 ? N_ : 1 ) );  YPY_.resize( my_max( 1, M1_ + M2_ ) );  if(M1_)    YPY_(1,M1_) = 0.0; // Must be for this QP interface  // Initialize variable bound constraints  if( dL ) {    VectorDenseEncap dL_de(*dL);    VectorDenseEncap dU_de(*dU);//.........这里部分代码省略.........
开发者ID:haripandey,项目名称:trilinos,代码行数:101,


示例17: dense_Vp_StPtMtV

void dense_Vp_StPtMtV(  DVectorSlice                 *y  ,value_type                 a  ,const GenPermMatrixSlice   &P  ,BLAS_Cpp::Transp           P_trans  ,const M_t                  &M  ,BLAS_Cpp::Transp           M_trans  ,const V_t                  &x  ,value_type                 b  ){  using BLAS_Cpp::no_trans;  using BLAS_Cpp::trans;  using BLAS_Cpp::trans_not;  using BLAS_Cpp::rows;  using BLAS_Cpp::cols;  using DenseLinAlgPack::dot;  using DenseLinAlgPack::DVector;  using DenseLinAlgPack::Vt_S;  using AbstractLinAlgPack::dot;  using AbstractLinAlgPack::Vp_StMtV;  using AbstractLinAlgPack::GenPermMatrixSlice;  typedef AbstractLinAlgPack::EtaVector eta;  using Teuchos::Workspace;  Teuchos::WorkspaceStore* wss = Teuchos::get_default_workspace_store().get();    // Validate the sizes  //   // y += op(P)*op(M)*x  //   const DenseLinAlgPack::size_type    ny = y->size(),    nx = x.size(),    opM_rows = rows( M.rows(), M.cols(), M_trans ),    opM_cols = cols( M.rows(), M.cols(), M_trans );  if(    ny != rows( P.rows(), P.cols(), P_trans )       || nx != opM_cols       || cols( P.rows(), P.cols(), P_trans ) != opM_rows )    throw std::length_error( "MatrixOp::Vp_StPtMtV(...) : Error, "      "sizes of arguments does not match up" );  //  // Compute y = b*y + a*op(P)*op(M)*x in a resonably efficient manner.  This  // implementation will assume that M is stored as a dense matrix.  Either  // t = op(M)*x is computed first (O(opM_rows*nx) flops) then y = b*y + a*op(P)*t  // (O(ny) + O(P_nz) flops) or each row of t' = e(j)' * op(M) (O(nx) flops)  // is computed one at a time and then y(i) = b*y(i) + a*t'*x (O(nx)  flops)  // where op(P)(i,j) = 1.0.  In the latter case, there are P_nz rows  // of op(M) that have to be generated so the total cost is O(P_nz*nx).  // Therefore, we will do the former if opM_rows < P_nz and the latter otherwise.  //  if( !P.nz() ) {    // y = b*y    if(b==0.0)       *y = 0.0;    else if(b!=1.0)  Vt_S(y,b);  }  else if( opM_rows > P.nz() || P.is_identity() ) {    // t = op(M)*x    Workspace<value_type> t_ws(wss,opM_rows);    DVectorSlice t(&t_ws[0],t_ws.size());    LinAlgOpPack::V_MtV( &t, M, M_trans, x );    // y = b*y + a*op(P)*t    Vp_StMtV( y, a, P, P_trans, t(), b );  }  else {    // y = b*y    if(b==0.0)       *y = 0.0;    else if(b!=1.0)  Vt_S(y,b);    // Compute t' = e(j)' * op(M) then y(i) += a*t'*x where op(P)(i,j) = 1.0    Workspace<value_type> t_ws(wss,opM_cols);    DVectorSlice t(&t_ws[0],t_ws.size());    if( P.is_identity() ) {      for( size_type k = 1; k <= P.nz(); ++k ) {        const size_type          i = k,          j = k;        // t = op(M') * e(j)			        LinAlgOpPack::V_MtV( &t, M, trans_not(M_trans), eta(j,opM_rows)() );        // y(i) += a*t'*x        (*y)(i) += a * dot( t(), x );      }    }    else {      for( GenPermMatrixSlice::const_iterator itr = P.begin(); itr != P.end(); ++itr ) {        const DenseLinAlgPack::size_type          i = P_trans == no_trans ? itr->row_i() : itr->col_j(),          j = P_trans == no_trans ? itr->col_j() : itr->row_i();        // t = op(M') * e(j)			        LinAlgOpPack::V_MtV( &t, M, trans_not(M_trans), eta(j,opM_rows)() );        // y(i) += a*t'*x        (*y)(i) += a * dot( t(), x );      }    }  }}
开发者ID:00liujj,项目名称:trilinos,代码行数:94,


示例18: print_algorithm_step

bool PreEvalNewPointBarrier_Step::do_step(  Algorithm& _algo, poss_type step_poss, IterationPack::EDoStepType type  ,poss_type assoc_step_poss  )  {  using Teuchos::dyn_cast;  using IterationPack::print_algorithm_step;  using AbstractLinAlgPack::force_in_bounds_buffer;  NLPAlgo            &algo   = dyn_cast<NLPAlgo>(_algo);  IpState             &s      = dyn_cast<IpState>(_algo.state());  NLP                 &nlp    = algo.nlp();  NLPFirstOrder   *nlp_foi = dynamic_cast<NLPFirstOrder*>(&nlp);    EJournalOutputLevel olevel = algo.algo_cntr().journal_output_level();  std::ostream& out = algo.track().journal_out();    if(!nlp.is_initialized())    nlp.initialize(algo.algo_cntr().check_results());  // print step header.  if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) )     {    using IterationPack::print_algorithm_step;    print_algorithm_step( _algo, step_poss, type, assoc_step_poss, out );    }  IterQuantityAccess<value_type>     &barrier_parameter_iq = s.barrier_parameter();  IterQuantityAccess<VectorMutable>  &x_iq  = s.x();  if( x_iq.last_updated() == IterQuantity::NONE_UPDATED )     {    if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) )       {      out << "/nInitialize x with x_k = nlp.xinit() .../n"        << " and push x_k within bounds./n";      }    VectorMutable& x_k = x_iq.set_k(0) = nlp.xinit();      // apply transformation operator to push x sufficiently within bounds    force_in_bounds_buffer(relative_bound_push_,                  absolute_bound_push_,                 nlp.xl(),                 nlp.xu(),                 &x_k);    // evaluate the func and constraints    IterQuantityAccess<value_type>      &f_iq    = s.f();    IterQuantityAccess<VectorMutable>      &Gf_iq   = s.Gf(),      *c_iq    = nlp.m() > 0 ? &s.c() : NULL;    IterQuantityAccess<MatrixOp>      *Gc_iq   = nlp_foi ? &s.Gc() : NULL;    using AbstractLinAlgPack::assert_print_nan_inf;    assert_print_nan_inf(x_k, "x", true, NULL); // With throw exception if Inf or NaN!    // Wipe out storage for computed iteration quantities (just in case?) : RAB: 7/29/2002    if(f_iq.updated_k(0))      f_iq.set_not_updated_k(0);    if(Gf_iq.updated_k(0))      Gf_iq.set_not_updated_k(0);    if (c_iq)      {      if(c_iq->updated_k(0))        c_iq->set_not_updated_k(0);      }    if (nlp_foi)      {      if(Gc_iq->updated_k(0))        Gc_iq->set_not_updated_k(0);      }    }  if (barrier_parameter_iq.last_updated() == IterQuantity::NONE_UPDATED)    {    barrier_parameter_iq.set_k(-1) = 0.1; // RAB: 7/29/2002: This should be parameterized! (allow user to set this!)    }  // Print vector information  if( static_cast<int>(olevel) >= static_cast<int>(PRINT_VECTORS) )     {    out << "x_k =/n" << x_iq.get_k(0);    }  return true;  }
开发者ID:00liujj,项目名称:trilinos,代码行数:88,


示例19: rsqp_algo

bool CheckConvergenceStd_Strategy::Converged(  Algorithm& _algo  )  {  using AbstractLinAlgPack::assert_print_nan_inf;  using AbstractLinAlgPack::combined_nu_comp_err;    NLPAlgo        &algo = rsqp_algo(_algo);  NLPAlgoState   &s    = algo.rsqp_state();  NLP            &nlp  = algo.nlp();  EJournalOutputLevel olevel = algo.algo_cntr().journal_output_level();  std::ostream& out = algo.track().journal_out();  const size_type    n  = nlp.n(),    m  = nlp.m(),    nb = nlp.num_bounded_x();  // Get the iteration quantities  IterQuantityAccess<value_type>    &opt_kkt_err_iq  = s.opt_kkt_err(),    &feas_kkt_err_iq = s.feas_kkt_err(),      &comp_kkt_err_iq = s.comp_kkt_err();    IterQuantityAccess<VectorMutable>    &x_iq       = s.x(),    &d_iq       = s.d(),    &Gf_iq      = s.Gf(),    *c_iq       = m     ? &s.c()      : NULL,    *rGL_iq     = n > m ? &s.rGL()    : NULL,    *GL_iq      = n > m ? &s.GL()     : NULL,    *nu_iq      = n > m ? &s.nu()     : NULL;  // opt_err = (||rGL||inf or ||GL||) / (||Gf|| + scale_kkt_factor)  value_type     norm_inf_Gf_k = 0.0,    norm_inf_GLrGL_k = 0.0;  if( n > m && scale_opt_error_by_Gf() && Gf_iq.updated_k(0) ) {    assert_print_nan_inf(      norm_inf_Gf_k = Gf_iq.get_k(0).norm_inf(),      "||Gf_k||inf",true,&out      );  }  // NOTE:  // The strategy object CheckConvergenceIP_Strategy assumes  // that this will always be the gradient of the lagrangian  // of the original problem, not the gradient of the lagrangian  // for psi. (don't use augmented nlp info here)  if( n > m ) {    if( opt_error_check() == OPT_ERROR_REDUCED_GRADIENT_LAGR ) {      assert_print_nan_inf( norm_inf_GLrGL_k = rGL_iq->get_k(0).norm_inf(),                  "||rGL_k||inf",true,&out);    }    else {      assert_print_nan_inf( norm_inf_GLrGL_k = GL_iq->get_k(0).norm_inf(),                  "||GL_k||inf",true,&out);    }  }  const value_type    opt_scale_factor = 1.0 + norm_inf_Gf_k,    opt_err = norm_inf_GLrGL_k / opt_scale_factor;    // feas_err  const value_type feas_err = ( ( m ? c_iq->get_k(0).norm_inf() : 0.0 ) );  // comp_err  value_type comp_err = 0.0;  if ( n > m ) {    if (nb > 0) {      comp_err = combined_nu_comp_err(nu_iq->get_k(0), x_iq.get_k(0), nlp.xl(), nlp.xu());    }    if(m) {      assert_print_nan_inf( feas_err,"||c_k||inf",true,&out);    }  }  // scaling factors  const value_type     scale_opt_factor = CalculateScalingFactor(s, scale_opt_error_by()),    scale_feas_factor = CalculateScalingFactor(s, scale_feas_error_by()),    scale_comp_factor = CalculateScalingFactor(s, scale_comp_error_by());    // kkt_err  const value_type    opt_kkt_err_k  = opt_err/scale_opt_factor,     feas_kkt_err_k = feas_err/scale_feas_factor,    comp_kkt_err_k = comp_err/scale_comp_factor;  // update the iteration quantities  if(n > m) opt_kkt_err_iq.set_k(0) = opt_kkt_err_k;  feas_kkt_err_iq.set_k(0) = feas_kkt_err_k;  comp_kkt_err_iq.set_k(0) = comp_kkt_err_k;  // step_err  value_type step_err = 0.0;  if( d_iq.updated_k(0) ) {//.........这里部分代码省略.........
开发者ID:haripandey,项目名称:trilinos,代码行数:101,


示例20: V_InvMtV

void MatrixSymPosDefLBFGS::V_InvMtV(  VectorMutable* y, BLAS_Cpp::Transp trans_rhs1  , const Vector& x  ) const{  using AbstractLinAlgPack::Vp_StMtV;  using DenseLinAlgPack::V_InvMtV;  using LinAlgOpPack::V_mV;  using LinAlgOpPack::V_StV;  using LinAlgOpPack::Vp_V;  using LinAlgOpPack::V_MtV;  using LinAlgOpPack::V_StMtV;  using LinAlgOpPack::Vp_MtV;  using DenseLinAlgPack::Vp_StMtV;  typedef VectorDenseEncap         vde;  typedef VectorDenseMutableEncap  vdme;  using Teuchos::Workspace;  Teuchos::WorkspaceStore* wss = Teuchos::get_default_workspace_store().get();  assert_initialized();  TEUCHOS_TEST_FOR_EXCEPT( !(  inverse_is_updated_  ) ); // For now just always update  // y = inv(Bk) * x = Hk * x  //  // = gk*x + [S gk*Y] * [ inv(R')*(D+gk*Y'Y)*inv(R)     -inv(R') ] * [   S'  ] * x  //                     [            -inv(R)                0    ]   [ gk*Y' ]  //  // Perform in the following (in order):  //  // y = gk*x  //  // t1 = [   S'*x  ]					<: R^(2*m)  //      [ gk*Y'*x ]  //  // t2 = inv(R) * t1(1:m)			<: R^(m)  //  // t3 = - inv(R') * t1(m+1,2*m)		<: R^(m)  //  // t4 = gk * Y'Y * t2				<: R^(m)  //  // t4 += D*t2  //  // t5 = inv(R') * t4				<: R^(m)  //  // t5 += t3  //  // y += S*t5  //  // y += -gk*Y*t2  // y = gk*x  V_StV( y, gamma_k_, x );  const size_type    mb = m_bar_;	    if( !mb )    return;	// No updates have been performed.  const multi_vec_ptr_t    S = this->S(),    Y = this->Y();  // Get workspace  Workspace<value_type>    t1_ws(wss,2*mb);  DVectorSlice                   t1(&t1_ws[0],t1_ws.size());  Workspace<value_type>    t2_ws(wss,mb);  DVectorSlice                   t2(&t2_ws[0],t2_ws.size());  Workspace<value_type>    t3_ws(wss,mb);  DVectorSlice                   t3(&t3_ws[0],t3_ws.size());  Workspace<value_type>    t4_ws(wss,mb);  DVectorSlice                   t4(&t4_ws[0],t4_ws.size());  Workspace<value_type>    t5_ws(wss,mb);  DVectorSlice                   t5(&t5_ws[0],t5_ws.size());  VectorSpace::vec_mut_ptr_t    t = S->space_rows().create_member();  const DMatrixSliceTri    &R = this->R();  const DMatrixSliceSym    &YTY = this->YTY();  // t1 = [   S'*x  ]  //      [ gk*Y'*x ]  V_MtV( t.get(), *S, BLAS_Cpp::trans, x );  t1(1,mb) = vde(*t)();  V_StMtV( t.get(), gamma_k_, *Y, BLAS_Cpp::trans, x );  t1(mb+1,2*mb) = vde(*t)();  // t2 = inv(R) * t1(1:m)  V_InvMtV( &t2, R, BLAS_Cpp::no_trans, t1(1,mb) );  // t3 = - inv(R') * t1(m+1,2*m)  V_mV( &t3, t1(mb+1,2*mb) );  V_InvMtV( &t3, R, BLAS_Cpp::trans, t3 );//.........这里部分代码省略.........
开发者ID:00liujj,项目名称:trilinos,代码行数:101,


示例21: Converged

bool CheckConvergenceIP_Strategy::Converged(  Algorithm& _algo  )  {  using Teuchos::dyn_cast;  using AbstractLinAlgPack::num_bounded;  using AbstractLinAlgPack::IP_comp_err_with_mu;  // Calculate kkt errors and check for overall convergence  //bool found_solution = CheckConvergenceStd_Strategy::Converged(_algo);  bool found_solution = false;  // Recalculate the complementarity error including mu    // Get the iteration quantities  IpState &s = dyn_cast<IpState>(*_algo.get_state());  NLPAlgo& algo = rsqp_algo(_algo);  NLP& nlp = algo.nlp();    EJournalOutputLevel olevel = algo.algo_cntr().journal_output_level();  std::ostream& out = algo.track().journal_out();  // Get necessary iteration quantities  const value_type &mu_km1 = s.barrier_parameter().get_k(-1);  const Vector& x_k = s.x().get_k(0);  const VectorMutable& Gf_k = s.Gf().get_k(0);  const Vector& rGL_k = s.rGL().get_k(0);  const Vector& c_k = s.c().get_k(0);  const Vector& vl_k = s.Vl().get_k(0).diag();  const Vector& vu_k = s.Vu().get_k(0).diag();    // Calculate the errors with Andreas' scaling  value_type& opt_err = s.opt_kkt_err().set_k(0);  value_type& feas_err = s.feas_kkt_err().set_k(0);  value_type& comp_err = s.comp_kkt_err().set_k(0);  value_type& comp_err_mu = s.comp_err_mu().set_k(0);  // scaling  value_type scale_1 = 1 + x_k.norm_1()/x_k.dim();  Teuchos::RCP<VectorMutable> temp = Gf_k.clone();  temp->axpy(-1.0, vl_k);  temp->axpy(1.0, vu_k);  value_type scale_2 = temp->norm_1();  scale_2 += vl_k.norm_1() + vu_k.norm_1();  *temp = nlp.infinite_bound();  const size_type nlb = num_bounded(nlp.xl(), *temp, nlp.infinite_bound());  *temp = -nlp.infinite_bound();  const size_type nub = num_bounded(*temp, nlp.xu(), nlp.infinite_bound());  scale_2 = 1 + scale_2/(1+nlp.m()+nlb+nub);  // Calculate the opt_err  opt_err = rGL_k.norm_inf() / scale_2;  // Calculate the feas_err  feas_err = c_k.norm_inf() / scale_1;    // Calculate the comp_err  if( (int)olevel >= (int)PRINT_VECTORS )    {    out << "/nx =/n"    << s.x().get_k(0);    out << "/nxl =/n"   << nlp.xl();    out << "/nvl =/n"   << s.Vl().get_k(0).diag();    out << "/nxu =/n"   << nlp.xu();    out << "/nvu =/n"   << s.Vu().get_k(0).diag();    }  comp_err = IP_comp_err_with_mu(    0.0, nlp.infinite_bound(), s.x().get_k(0), nlp.xl(), nlp.xu()    ,s.Vl().get_k(0).diag(), s.Vu().get_k(0).diag());  comp_err_mu = IP_comp_err_with_mu(    mu_km1, nlp.infinite_bound(), s.x().get_k(0), nlp.xl(), nlp.xu()    ,s.Vl().get_k(0).diag(), s.Vu().get_k(0).diag());  comp_err = comp_err / scale_2;  comp_err_mu = comp_err_mu / scale_2;  // check for convergence    const value_type opt_tol = algo.algo_cntr().opt_tol();  const value_type feas_tol = algo.algo_cntr().feas_tol();  const value_type comp_tol = algo.algo_cntr().comp_tol();  if (opt_err < opt_tol && feas_err < feas_tol && comp_err < comp_tol)    {    found_solution = true;    }  if( int(olevel) >= int(PRINT_ALGORITHM_STEPS) || (int(olevel) >= int(PRINT_BASIC_ALGORITHM_INFO) && found_solution) )    {    out	      << "/nopt_kkt_err_k   = " << opt_err << ( opt_err < opt_tol ? " < " : " > " )      << "opt_tol = " << opt_tol      << "/nfeas_kkt_err_k   = " << feas_err << ( feas_err < feas_tol ? " < " : " > " )      << "feas_tol = " << feas_tol      << "/ncomp_kkt_err_k   = " << comp_err << ( comp_err < comp_tol ? " < " : " > " )      << "comp_tol = " << comp_tol      << "/ncomp_err_mu      = " << comp_err_mu//.........这里部分代码省略.........
开发者ID:haripandey,项目名称:trilinos,代码行数:101,


示例22: dot

bool MoochoPack::CalcDFromYPYZPZ_Step::do_step(Algorithm& _algo  , poss_type step_poss, IterationPack::EDoStepType type, poss_type assoc_step_poss){  using Teuchos::implicit_cast;  using AbstractLinAlgPack::dot;  using LinAlgOpPack::V_VpV;  NLPAlgo &algo = rsqp_algo(_algo);  NLPAlgoState &s = algo.rsqp_state();  EJournalOutputLevel olevel = algo.algo_cntr().journal_output_level();  EJournalOutputLevel ns_olevel = algo.algo_cntr().null_space_journal_output_level();  std::ostream& out = algo.track().journal_out();  // print step header.  if( implicit_cast<int>(olevel) >= implicit_cast<int>(PRINT_ALGORITHM_STEPS) ) {    using IterationPack::print_algorithm_step;    print_algorithm_step( algo, step_poss, type, assoc_step_poss, out );  }  // d = Ypy + Zpz  VectorMutable &d_k = s.d().set_k(0);  const Vector &Ypy_k = s.Ypy().get_k(0);  const Vector &Zpz_k = s.Zpz().get_k(0);  V_VpV( &d_k, Ypy_k, Zpz_k );  Range1D    var_dep = s.var_dep(),    var_indep = s.var_indep();    if( implicit_cast<int>(olevel) >= implicit_cast<int>(PRINT_ALGORITHM_STEPS) ) {    const value_type very_small = std::numeric_limits<value_type>::min();    out      << "/n(Ypy_k'*Zpz_k)/(||Ypy_k||2 * ||Zpz_k||2 + eps)/n"      << "  = ("<<dot(Ypy_k,Zpz_k)<<")/("<<Ypy_k.norm_2()<<" * "<<Zpz_k.norm_2()<<" + "<<very_small<<")/n"      << "  = " << dot(Ypy_k,Zpz_k) / ( Ypy_k.norm_2() * Zpz_k.norm_2() + very_small ) << "/n";/*  ConstrainedOptPack::print_vector_change_stats(  s.x().get_k(0), "x", s.d().get_k(0), "d", out );*/    // ToDo: Replace the above with a reduction operator!  }  if( implicit_cast<int>(olevel) >= implicit_cast<int>(PRINT_ALGORITHM_STEPS) ) {    out << "/n||d_k||inf            = " << d_k.norm_inf();    if( var_dep.size() )      out << "/n||d(var_dep)_k||inf   = " << d_k.sub_view(var_dep)->norm_inf();    if( var_indep.size() )      out << "/n||d(var_indep)_k||inf = " << d_k.sub_view(var_indep)->norm_inf();    out << std::endl;  }  if( implicit_cast<int>(olevel) >= implicit_cast<int>(PRINT_VECTORS) ) {    out << "/nd_k = /n" << d_k;    if( var_dep.size() )      out << "/nd(var_dep)_k = /n" << *d_k.sub_view(var_dep);  }  if( implicit_cast<int>(ns_olevel) >= implicit_cast<int>(PRINT_VECTORS) ) {    if( var_indep.size() )      out << "/nd(var_indep)_k = /n" << *d_k.sub_view(var_indep);  }    return true;}
开发者ID:00liujj,项目名称:trilinos,代码行数:65,


示例23: do_step

bool EvalNewPointStd_Step::do_step(  Algorithm& _algo, poss_type step_poss, IterationPack::EDoStepType type  ,poss_type assoc_step_poss  ){  using Teuchos::rcp;  using Teuchos::dyn_cast;  using AbstractLinAlgPack::assert_print_nan_inf;  using IterationPack::print_algorithm_step;  using NLPInterfacePack::NLPFirstOrder;  NLPAlgo         &algo   = rsqp_algo(_algo);  NLPAlgoState    &s      = algo.rsqp_state();  NLPFirstOrder   &nlp    = dyn_cast<NLPFirstOrder>(algo.nlp());  EJournalOutputLevel olevel = algo.algo_cntr().journal_output_level();  EJournalOutputLevel ns_olevel = algo.algo_cntr().null_space_journal_output_level();  std::ostream& out = algo.track().journal_out();  // print step header.  if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) {    using IterationPack::print_algorithm_step;    print_algorithm_step( algo, step_poss, type, assoc_step_poss, out );  }  if(!nlp.is_initialized())    nlp.initialize(algo.algo_cntr().check_results());  Teuchos::VerboseObjectTempState<NLP>    nlpOutputTempState(rcp(&nlp,false),Teuchos::getFancyOStream(rcp(&out,false)),convertToVerbLevel(olevel));  const size_type    n  = nlp.n(),    nb = nlp.num_bounded_x(),    m  = nlp.m();  size_type    r  = 0;  // Get the iteration quantity container objects  IterQuantityAccess<value_type>    &f_iq   = s.f();  IterQuantityAccess<VectorMutable>    &x_iq   = s.x(),    *c_iq   = m > 0  ? &s.c() : NULL,    &Gf_iq  = s.Gf();  IterQuantityAccess<MatrixOp>    *Gc_iq  = m  > 0 ? &s.Gc() : NULL,    *Z_iq   = NULL,    *Y_iq   = NULL,    *Uz_iq  = NULL,    *Uy_iq  = NULL;  IterQuantityAccess<MatrixOpNonsing>    *R_iq   = NULL;  MatrixOp::EMatNormType mat_nrm_inf = MatrixOp::MAT_NORM_INF;  const bool calc_matrix_norms = algo.algo_cntr().calc_matrix_norms();  const bool calc_matrix_info_null_space_only = algo.algo_cntr().calc_matrix_info_null_space_only();    if( x_iq.last_updated() == IterQuantity::NONE_UPDATED ) {    if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) {      out << "/nx is not updated for any k so set x_k = nlp.xinit() .../n";    }    x_iq.set_k(0) = nlp.xinit();  }    // Validate x  if( nb && algo.algo_cntr().check_results() ) {    assert_print_nan_inf(      x_iq.get_k(0), "x_k", true      , int(olevel) >= int(PRINT_ALGORITHM_STEPS) ? &out : NULL      );    if( nlp.num_bounded_x() > 0 ) {      if(!bounds_tester().check_in_bounds(           int(olevel)  >= int(PRINT_ALGORITHM_STEPS) ? &out : NULL           ,int(olevel) >= int(PRINT_VECTORS)                // print_all_warnings           ,int(olevel) >= int(PRINT_ITERATION_QUANTITIES)  // print_vectors           ,nlp.xl(),        "xl"           ,nlp.xu(),        "xu"           ,x_iq.get_k(0),   "x_k"           ))      {        TEUCHOS_TEST_FOR_EXCEPTION(          true, TestFailed          ,"EvalNewPointStd_Step::do_step(...) : Error, "          "the variables bounds xl <= x_k <= xu where violated!" );      }    }  }  Vector &x = x_iq.get_k(0);  Range1D  var_dep(Range1D::INVALID), var_indep(Range1D::INVALID);  if( s.get_decomp_sys().get() ) {    const ConstrainedOptPack::DecompositionSystemVarReduct      *decomp_sys_vr = dynamic_cast<ConstrainedOptPack::DecompositionSystemVarReduct*>(&s.decomp_sys());    if(decomp_sys_vr) {      var_dep   = decomp_sys_vr->var_dep();      var_indep = decomp_sys_vr->var_indep();    }    s.var_dep(var_dep);//.........这里部分代码省略.........
开发者ID:00liujj,项目名称:trilinos,代码行数:101,


示例24: perform_update

bool ReducedHessianSecantUpdateLPBFGS_Strategy::perform_update(  DVectorSlice* s_bfgs, DVectorSlice* y_bfgs, bool first_update  ,std::ostream& out, EJournalOutputLevel olevel, NLPAlgo *algo, NLPAlgoState *s  ,MatrixOp *rHL_k  ){  using std::setw;  using std::endl;  using std::right;  using Teuchos::dyn_cast;  namespace rcp = MemMngPack;  using Teuchos::RCP;  using LinAlgOpPack::V_MtV;  using DenseLinAlgPack::dot;  using AbstractLinAlgPack::norm_inf;  using AbstractLinAlgPack::transVtMtV;  typedef ConstrainedOptPack::MatrixHessianSuperBasic MHSB_t;  using Teuchos::Workspace;  Teuchos::WorkspaceStore* wss = Teuchos::get_default_workspace_store().get();  if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) {    out << "/n*** (LPBFGS) Full limited memory BFGS to projected BFGS .../n";  }#ifdef _WINDOWS  MHSB_t &rHL_super = dynamic_cast<MHSB_t&>(*rHL_k);#else  MHSB_t &rHL_super = dyn_cast<MHSB_t>(*rHL_k);#endif  const size_type    n    = algo->nlp().n(),    r    = algo->nlp().r(),    n_pz = n-r;  bool do_projected_rHL_RR = false;  // See if we still have a limited memory BFGS update matrix  RCP<MatrixSymPosDefLBFGS> // We don't want this to be deleted until we are done with it    lbfgs_rHL_RR = Teuchos::rcp_const_cast<MatrixSymPosDefLBFGS>(      Teuchos::rcp_dynamic_cast<const MatrixSymPosDefLBFGS>(rHL_super.B_RR_ptr()) );  if( lbfgs_rHL_RR.get() && rHL_super.Q_R().is_identity()  ) {    //    // We have a limited memory BFGS matrix and have not started projected BFGS updating    // yet so lets determine if it is time to consider switching    //    // Check that the current update is sufficiently p.d. before we do anything    const value_type      sTy = dot(*s_bfgs,*y_bfgs),      yTy = dot(*y_bfgs,*y_bfgs);    if( !ConstrainedOptPack::BFGS_sTy_suff_p_d(      *s_bfgs,*y_bfgs,&sTy      ,  int(olevel) >= int(PRINT_ALGORITHM_STEPS) ? &out : NULL )      && !proj_bfgs_updater().bfgs_update().use_dampening()      )    {      if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) {        out	<< "/nWarning!  use_damening == false so there is no way we can perform any"            " kind of BFGS update (projected or not) so we will skip it!/n";      }      quasi_newton_stats_(*s).set_k(0).set_updated_stats(        QuasiNewtonStats::INDEF_SKIPED );      return true;    }    // Consider if we can even look at the active set yet.    const bool consider_switch  = lbfgs_rHL_RR->num_secant_updates() >= min_num_updates_proj_start();    if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) {      out << "/nnum_previous_updates = " << lbfgs_rHL_RR->num_secant_updates()        << ( consider_switch ? " >= " : " < " )        << "min_num_updates_proj_start = " << min_num_updates_proj_start()        << ( consider_switch           ? "/nConsidering if we should switch to projected BFGS updating of superbasics .../n"           : "/nNot time to consider switching to projected BFGS updating of superbasics yet!" );    }    if( consider_switch ) {      //       // Our job here is to determine if it is time to switch to projected projected      // BFGS updating.      //      if( act_set_stats_(*s).updated_k(-1) ) {        if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) {          out	<< "/nDetermining if projected BFGS updating of superbasics should begin .../n";        }        // Determine if the active set has calmed down enough        const SpVector          &nu_km1 = s->nu().get_k(-1);        const SpVectorSlice          nu_indep = nu_km1(s->var_indep());        const bool           act_set_calmed_down          = PBFGSPack::act_set_calmed_down(            act_set_stats_(*s).get_k(-1)            ,proj_bfgs_updater().act_set_frac_proj_start()            ,olevel,out            ),          max_num_updates_exceeded          = lbfgs_rHL_RR->m_bar() >= max_num_updates_proj_start();        do_projected_rHL_RR = act_set_calmed_down || max_num_updates_exceeded;        if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) {//.........这里部分代码省略.........
开发者ID:00liujj,项目名称:trilinos,代码行数:101,


示例25: rsqp_algo

bool TangentialStepIP_Step::do_step(  Algorithm& _algo, poss_type step_poss, IterationPack::EDoStepType type  ,poss_type assoc_step_poss  )  {  using BLAS_Cpp::no_trans;  using Teuchos::dyn_cast;  using AbstractLinAlgPack::assert_print_nan_inf;  using LinAlgOpPack::Vt_S;  using LinAlgOpPack::Vp_StV;  using LinAlgOpPack::V_StV;  using LinAlgOpPack::V_MtV;  using LinAlgOpPack::V_InvMtV;   using LinAlgOpPack::M_StM;  using LinAlgOpPack::Mp_StM;  using LinAlgOpPack::assign;  NLPAlgo	&algo	= rsqp_algo(_algo);  IpState	    &s      = dyn_cast<IpState>(_algo.state());  EJournalOutputLevel olevel = algo.algo_cntr().journal_output_level();  std::ostream& out = algo.track().journal_out();  // print step header.  if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) {    using IterationPack::print_algorithm_step;    print_algorithm_step( algo, step_poss, type, assoc_step_poss, out );  }  // Compute qp_grad which is an approximation to rGf + Z'*(mu*(invXu*e-invXl*e) + no_cross_term  // minimize round off error by calc'ing Z'*(Gf + mu*(invXu*e-invXl*e))  // qp_grad_k = Z'*(Gf + mu*(invXu*e-invXl*e))  const MatrixSymDiagStd  &invXu = s.invXu().get_k(0);  const MatrixSymDiagStd  &invXl = s.invXl().get_k(0);  const value_type            &mu    = s.barrier_parameter().get_k(0);  const MatrixOp          &Z_k   = s.Z().get_k(0);  Teuchos::RCP<VectorMutable> rhs = s.Gf().get_k(0).clone();  Vp_StV( rhs.get(), mu,      invXu.diag() );  Vp_StV( rhs.get(), -1.0*mu, invXl.diag() );    if( (int)olevel >= (int)PRINT_ALGORITHM_STEPS )     {    out << "/n||Gf_k + mu_k*(invXu_k-invXl_k)||inf = " << rhs->norm_inf() << std::endl;    }  if( (int)olevel >= (int)PRINT_VECTORS)    {    out << "/nGf_k + mu_k*(invXu_k-invXl_k) =/n" << *rhs;    }  VectorMutable &qp_grad_k = s.qp_grad().set_k(0);  V_MtV(&qp_grad_k, Z_k, BLAS_Cpp::trans, *rhs);    if( (int)olevel >= (int)PRINT_ALGORITHM_STEPS )     {    out << "/n||Z_k'*(Gf_k + mu_k*(invXu_k-invXl_k))||inf = " << qp_grad_k.norm_inf() << std::endl;    }  if( (int)olevel >= (int)PRINT_VECTORS )    {    out << "/nZ_k'*(Gf_k + mu_k*(invXu_k-invXl_k)) =/n" << qp_grad_k;    }  // error check for cross term  value_type         &zeta    = s.zeta().set_k(0);  const Vector &w_sigma = s.w_sigma().get_k(0);    // need code to calculate damping parameter  zeta = 1.0;  Vp_StV(&qp_grad_k, zeta, w_sigma);  if( (int)olevel >= (int)PRINT_ALGORITHM_STEPS )     {    out << "/n||qp_grad_k||inf = " << qp_grad_k.norm_inf() << std::endl;    }  if( (int)olevel >= (int)PRINT_VECTORS )     {    out << "/nqp_grad_k =/n" << qp_grad_k;    }  // build the "Hessian" term B = rHL + rHB  // should this be MatrixSymOpNonsing  const MatrixSymOp      &rHL_k = s.rHL().get_k(0);  const MatrixSymOp      &rHB_k = s.rHB().get_k(0);  MatrixSymOpNonsing &B_k   = dyn_cast<MatrixSymOpNonsing>(s.B().set_k(0));  if (B_k.cols() != Z_k.cols())    {    // Initialize space in rHB    dyn_cast<MatrixSymInitDiag>(B_k).init_identity(Z_k.space_rows(), 0.0);    }  //	M_StM(&B_k, 1.0, rHL_k, no_trans);  assign(&B_k, rHL_k, BLAS_Cpp::no_trans);  if( (int)olevel >= (int)PRINT_VECTORS )     {    out << "/nB_k = rHL_k =/n" << B_k;    }  Mp_StM(&B_k, 1.0, rHB_k, BLAS_Cpp::no_trans);  if( (int)olevel >= (int)PRINT_VECTORS ) //.........这里部分代码省略.........
开发者ID:haripandey,项目名称:trilinos,代码行数:101,


示例26: print_algorithm_step

bool PostEvalNewPointBarrier_Step::do_step(  Algorithm& _algo, poss_type step_poss, IterationPack::EDoStepType type  ,poss_type assoc_step_poss  )  {  using Teuchos::dyn_cast;  using IterationPack::print_algorithm_step;  using AbstractLinAlgPack::inv_of_difference;  using AbstractLinAlgPack::correct_upper_bound_multipliers;  using AbstractLinAlgPack::correct_lower_bound_multipliers;  using LinAlgOpPack::Vp_StV;  NLPAlgo            &algo   = dyn_cast<NLPAlgo>(_algo);  IpState             &s      = dyn_cast<IpState>(_algo.state());  NLP                 &nlp    = algo.nlp();    EJournalOutputLevel olevel = algo.algo_cntr().journal_output_level();  std::ostream& out = algo.track().journal_out();    if(!nlp.is_initialized())    nlp.initialize(algo.algo_cntr().check_results());  // print step header.  if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) )     {    using IterationPack::print_algorithm_step;    print_algorithm_step( _algo, step_poss, type, assoc_step_poss, out );    }  IterQuantityAccess<VectorMutable> &x_iq = s.x();  IterQuantityAccess<MatrixSymDiagStd> &Vl_iq = s.Vl();  IterQuantityAccess<MatrixSymDiagStd> &Vu_iq = s.Vu();  ///***********************************************************  // Calculate invXl = diag(1/(x-xl))   //  and invXu = diag(1/(xu-x)) matrices  ///***********************************************************  // get references to x, invXl, and invXu  VectorMutable& x = x_iq.get_k(0);  MatrixSymDiagStd& invXu = s.invXu().set_k(0);  MatrixSymDiagStd& invXl = s.invXl().set_k(0);    //std::cout << "xu=/n";  //nlp.xu().output(std::cout);  inv_of_difference(1.0, nlp.xu(), x, &invXu.diag());  inv_of_difference(1.0, x, nlp.xl(), &invXl.diag());  //std::cout << "invXu=/v";  //invXu.output(std::cout);  //std::cout << "/ninvXl=/v";  //invXl.output(std::cout);    // Check for divide by zeros -     using AbstractLinAlgPack::assert_print_nan_inf;    assert_print_nan_inf(invXu.diag(), "invXu", true, &out);     assert_print_nan_inf(invXl.diag(), "invXl", true, &out);   // These should never go negative either - could be a useful check  // Initialize Vu and Vl if necessary  if ( /*!Vu_iq.updated_k(0) */ Vu_iq.last_updated() == IterQuantity::NONE_UPDATED )    {    VectorMutable& vu = Vu_iq.set_k(0).diag();		    vu = 0;    Vp_StV(&vu, s.barrier_parameter().get_k(-1), invXu.diag());    if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) )       {      out << "/nInitialize Vu with barrier_parameter * invXu .../n";      }    }if ( /*!Vl_iq.updated_k(0) */ Vl_iq.last_updated() == IterQuantity::NONE_UPDATED  )    {    VectorMutable& vl = Vl_iq.set_k(0).diag();    vl = 0;    Vp_StV(&vl, s.barrier_parameter().get_k(-1), invXl.diag());    if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) )       {      out << "/nInitialize Vl with barrier_parameter * invXl .../n";      }    }  if (s.num_basis().updated_k(0))    {    // Basis changed, reorder Vl and Vu    if (Vu_iq.updated_k(-1))      { Vu_iq.set_k(0,-1); }    if (Vl_iq.updated_k(-1))      { Vl_iq.set_k(0,-1); }          VectorMutable& vu = Vu_iq.set_k(0).diag();    VectorMutable& vl = Vl_iq.set_k(0).diag();    s.P_var_last().permute( BLAS_Cpp::trans, &vu ); // Permute back to original order    s.P_var_last().permute( BLAS_Cpp::trans, &vl ); // Permute back to original order//.........这里部分代码省略.........
开发者ID:00liujj,项目名称:trilinos,代码行数:101,


示例27: do_step

bool CheckDescentQuasiNormalStep_Step::do_step(  Algorithm& _algo, poss_type step_poss, IterationPack::EDoStepType type  ,poss_type assoc_step_poss  ){  using BLAS_Cpp::no_trans;  using AbstractLinAlgPack::dot;  using LinAlgOpPack::V_MtV;  NLPAlgo         &algo        = rsqp_algo(_algo);  NLPAlgoState    &s           = algo.rsqp_state();  NLP             &nlp         = algo.nlp();  const Range1D   equ_decomp   = s.equ_decomp();  EJournalOutputLevel olevel = algo.algo_cntr().journal_output_level();  std::ostream& out = algo.track().journal_out();  // print step header.  if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) {    using IterationPack::print_algorithm_step;    print_algorithm_step( algo, step_poss, type, assoc_step_poss, out );  }    const size_type    nb = nlp.num_bounded_x();  // Get iteration quantities  IterQuantityAccess<VectorMutable>    &c_iq   = s.c(),    &Ypy_iq = s.Ypy();  const Vector::vec_ptr_t    cd_k = c_iq.get_k(0).sub_view(equ_decomp);  const Vector    &Ypy_k = Ypy_iq.get_k(0);    value_type descent_c = -1.0;  if( s.get_iter_quant_id( Gc_name ) != AlgorithmState::DOES_NOT_EXIST ) {    if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) {      out	<< "/nGc_k exists; compute descent_c = c_k(equ_decomp)'*Gc_k(:,equ_decomp)'*Ypy_k .../n";    }    const MatrixOp::mat_ptr_t      Gcd_k = s.Gc().get_k(0).sub_view(Range1D(),equ_decomp);    VectorSpace::vec_mut_ptr_t      t = cd_k->space().create_member();    V_MtV( t.get(), *Gcd_k, BLAS_Cpp::trans, Ypy_k );    if( static_cast<int>(olevel) >= static_cast<int>(PRINT_VECTORS) ) {      out	<< "/nGc_k(:,equ_decomp)'*Ypy_k =/n" << *t;    }    descent_c = dot( *cd_k, *t );  }  else {    if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) {      out	<< "/nGc_k does not exist; compute descent_c = c_k(equ_decomp)'*FDGc_k(:,equ_decomp)'*Ypy_k "        << "using finite differences .../n";    }    VectorSpace::vec_mut_ptr_t      t = nlp.space_c()->create_member();    calc_fd_prod().calc_deriv_product(      s.x().get_k(0),nb?&nlp.xl():NULL,nb?&nlp.xu():NULL      ,Ypy_k,NULL,&c_iq.get_k(0),true,&nlp      ,NULL,t.get()      ,static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ? &out : NULL      );    if( static_cast<int>(olevel) >= static_cast<int>(PRINT_VECTORS) ) {      out	<< "/nFDGc_k(:,equ_decomp)'*Ypy_k =/n" << *t->sub_view(equ_decomp);    }    descent_c = dot( *cd_k, *t->sub_view(equ_decomp) );  }  if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) {    out	<< "/ndescent_c = " << descent_c << std::endl;  }  if( descent_c > 0.0 ) { // ToDo: add some allowance for > 0.0 for finite difference errors!    if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) {      out	<< "/nError, descent_c > 0.0; this is not a descent direction/n"        << "Throw TestFailed and terminate the algorithm .../n";    }    TEST_FOR_EXCEPTION(      true, TestFailed      ,"CheckDescentQuasiNormalStep_Step::do_step(...) : Error, descent for the decomposed constraints "      "with respect to the quasi-normal step c_k(equ_decomp)'*FDGc_k(:,equ_decomp)'*Ypy_k = "      << descent_c << " > 0.0;  This is not a descent direction!/n" );  }  return true;}
开发者ID:haripandey,项目名称:trilinos,代码行数:87,


示例28: Vp_StMtV

void MatrixSymPosDefLBFGS::Vp_StMtV(    VectorMutable* y, value_type alpha, BLAS_Cpp::Transp trans_rhs1  , const Vector& x, value_type beta  ) const{  using AbstractLinAlgPack::Vt_S;  using AbstractLinAlgPack::Vp_StV;  using AbstractLinAlgPack::Vp_StMtV;  using LinAlgOpPack::V_StMtV;  using LinAlgOpPack::V_MtV;  typedef VectorDenseEncap         vde;  typedef VectorDenseMutableEncap  vdme;  using Teuchos::Workspace;  Teuchos::WorkspaceStore* wss = Teuchos::get_default_workspace_store().get();  assert_initialized();  TEUCHOS_TEST_FOR_EXCEPT( !(  original_is_updated_  ) ); // For now just always update  // y = b*y + Bk * x  //  // y = b*y + (1/gk)*x - [ (1/gk)*S  Y ] * inv(Q) * [ (1/gk)*S' ] * x  //                                                 [     Y'    ]  // Perform the following operations (in order):  //  // y = b*y  //  // y += (1/gk)*x  //  // t1 = [ (1/gk)*S'*x ]		<: R^(2*m)  //		[      Y'*x   ]  //  // t2 =	inv(Q) * t1			<: R^(2*m)  //  // y += -(1/gk) * S * t2(1:m)  //  // y += -1.0 * Y * t2(m+1,2m)  const value_type    invgk = 1.0 / gamma_k_;  // y = b*y  Vt_S( y, beta );  // y += (1/gk)*x  Vp_StV( y, invgk, x );  if( !m_bar_ )    return;	// No updates have been added yet.  const multi_vec_ptr_t    S = this->S(),    Y = this->Y();  // Get workspace  const size_type    mb = m_bar_;  Workspace<value_type>  t1_ws(wss,2*mb);  DVectorSlice                 t1(&t1_ws[0],t1_ws.size());  Workspace<value_type>  t2_ws(wss,2*mb);  DVectorSlice                 t2(&t2_ws[0],t2_ws.size());  VectorSpace::vec_mut_ptr_t    t = S->space_rows().create_member();  // t1 = [ (1/gk)*S'*x ]  //		[      Y'*x   ]  V_StMtV( t.get(), invgk, *S, BLAS_Cpp::trans, x );  t1(1,mb) = vde(*t)();  V_MtV( t.get(), *Y, BLAS_Cpp::trans, x );  t1(mb+1,2*mb) = vde(*t)();  // t2 =	inv(Q) * t1  V_invQtV( &t2, t1 );  // y += -(1/gk) * S * t2(1:m)  (vdme(*t)() = t2(1,mb));  Vp_StMtV( y, -invgk, *S, BLAS_Cpp::no_trans, *t );  // y += -1.0 * Y * t2(m+1,2m  (vdme(*t)() = t2(mb+1,2*mb));  Vp_StMtV( y, -1.0, *Y, BLAS_Cpp::no_trans, *t );}
开发者ID:00liujj,项目名称:trilinos,代码行数:87,


示例29: syrk

bool MultiVectorMutableCols::syrk(  BLAS_Cpp::Transp M_trans, value_type alpha  , value_type beta, MatrixSymOp* sym_lhs ) const{  using LinAlgOpPack::dot;  MatrixSymOpGetGMSSymMutable    *symwo_gms_lhs = dynamic_cast<MatrixSymOpGetGMSSymMutable*>(sym_lhs);  if(!symwo_gms_lhs) {    return MatrixOp::syrk(M_trans,alpha,beta,sym_lhs); // Boot it  }  MatrixDenseSymMutableEncap  DMatrixSliceSym(symwo_gms_lhs);  const int num_vecs = this->col_vecs_.size();  TEST_FOR_EXCEPTION(    num_vecs != DMatrixSliceSym().rows(), std::logic_error    ,"MultiVectorMutableCols::syrk(...) : Error, sizes do not match up!" );  // Fill the upper or lower triangular region.  if( DMatrixSliceSym().uplo() == BLAS_Cpp::upper ) {    for( int i = 1; i <= num_vecs; ++i ) {      for( int j = i; j <= num_vecs; ++j ) { // Upper triangle!        DMatrixSliceSym().gms()(i,j) = beta * DMatrixSliceSym().gms()(i,j) + alpha * dot(*col_vecs_[i-1],*col_vecs_[j-1]);      }    }  }  else {    for( int i = 1; i <= num_vecs; ++i ) {      for( int j = 1; j <= i; ++j ) { // Lower triangle!        DMatrixSliceSym().gms()(i,j) = beta * DMatrixSliceSym().gms()(i,j) + alpha * dot(*col_vecs_[i-1],*col_vecs_[j-1]);      }    }  }  return true;}
开发者ID:haripandey,项目名称:trilinos,代码行数:32,



注:本文中的AbstractLinAlgPack类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


C++ AbstractNode类代码示例
C++ AbstractKart类代码示例
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。