这篇教程C++ FINITE_RNK函数代码示例写得很实用,希望能帮到您。
本文整理汇总了C++中FINITE_RNK函数的典型用法代码示例。如果您正苦于以下问题:C++ FINITE_RNK函数的具体用法?C++ FINITE_RNK怎么用?C++ FINITE_RNK使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。 在下文中一共展示了FINITE_RNK函数的26个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C++代码示例。 示例1: X/* Check if the vecsz/sz strides are consistent with the problem being in-place for vecsz.dim[vdim], or for all dimensions if vdim == RNK_MINFTY. We can't just use tensor_inplace_strides because rdft transforms have the unfortunate property of differing input and output sizes. This routine is not exhaustive; we only return 1 for the most common case. */int X(rdft2_inplace_strides)(const problem_rdft2 *p, int vdim){ INT N, Nc; INT rs, cs; int i; for (i = 0; i + 1 < p->sz->rnk; ++i) if (p->sz->dims[i].is != p->sz->dims[i].os) return 0; if (!FINITE_RNK(p->vecsz->rnk) || p->vecsz->rnk == 0) return 1; if (!FINITE_RNK(vdim)) { /* check all vector dimensions */ for (vdim = 0; vdim < p->vecsz->rnk; ++vdim) if (!X(rdft2_inplace_strides)(p, vdim)) return 0; return 1; } A(vdim < p->vecsz->rnk); if (p->sz->rnk == 0) return(p->vecsz->dims[vdim].is == p->vecsz->dims[vdim].os); N = X(tensor_sz)(p->sz); Nc = (N / p->sz->dims[p->sz->rnk-1].n) * (p->sz->dims[p->sz->rnk-1].n/2 + 1); X(rdft2_strides)(p->kind, p->sz->dims + p->sz->rnk - 1, &rs, &cs); /* the factor of 2 comes from the fact that RS is the stride of p->r0 and p->r1, which is twice as large as the strides in the r2r case */ return(p->vecsz->dims[vdim].is == p->vecsz->dims[vdim].os && (X(iabs)(2 * p->vecsz->dims[vdim].os) >= X(imax)(2 * Nc * X(iabs)(cs), N * X(iabs)(rs))));}
开发者ID:8cH9azbsFifZ,项目名称:wspr,代码行数:41,
示例2: X/* Check if the vecsz/sz strides are consistent with the problem being in-place for vecsz.dim[vdim], or for all dimensions if vdim == RNK_MINFTY. We can't just use tensor_inplace_strides because rdft transforms have the unfortunate property of differing input and output sizes. This routine is not exhaustive; we only return 1 for the most common case. */int X(rdft2_inplace_strides)(const problem_rdft2 *p, int vdim){ int N, Nc; int is, os; int i; for (i = 0; i + 1 < p->sz->rnk; ++i) if (p->sz->dims[i].is != p->sz->dims[i].os) return 0; if (!FINITE_RNK(p->vecsz->rnk) || p->vecsz->rnk == 0) return 1; if (!FINITE_RNK(vdim)) { /* check all vector dimensions */ for (vdim = 0; vdim < p->vecsz->rnk; ++vdim) if (!X(rdft2_inplace_strides)(p, vdim)) return 0; return 1; } A(vdim < p->vecsz->rnk); if (p->sz->rnk == 0) return(p->vecsz->dims[vdim].is == p->vecsz->dims[vdim].os); N = X(tensor_sz)(p->sz); Nc = (N / p->sz->dims[p->sz->rnk-1].n) * (p->sz->dims[p->sz->rnk-1].n/2 + 1); X(rdft2_strides)(p->kind, p->sz->dims + p->sz->rnk - 1, &is, &os); return(p->vecsz->dims[vdim].is == p->vecsz->dims[vdim].os && X(iabs)(p->vecsz->dims[vdim].os) >= X(imax)(Nc * X(iabs)(os), N * X(iabs)(is)));}
开发者ID:abrahamneben,项目名称:orbcomm_beam_mapping,代码行数:37,
示例3: X/* The inverse of X(tensor_append): splits the sz tensor into tensor a followed by tensor b, where a's rank is arnk. */void X(tensor_split)(const tensor *sz, tensor **a, int arnk, tensor **b){ A(FINITE_RNK(sz->rnk) && FINITE_RNK(arnk)); *a = X(tensor_copy_sub)(sz, 0, arnk); *b = X(tensor_copy_sub)(sz, arnk, sz->rnk - arnk);}
开发者ID:bambang,项目名称:vsipl,代码行数:9,
示例4: Atensor *X(mktensor)(int rnk) { tensor *x; A(rnk >= 0);#if defined(STRUCT_HACK_KR) if (FINITE_RNK(rnk) && rnk > 1) x = (tensor *)MALLOC(sizeof(tensor) + (rnk - 1) * sizeof(iodim), TENSORS); else x = (tensor *)MALLOC(sizeof(tensor), TENSORS);#elif defined(STRUCT_HACK_C99) if (FINITE_RNK(rnk)) x = (tensor *)MALLOC(sizeof(tensor) + rnk * sizeof(iodim), TENSORS); else x = (tensor *)MALLOC(sizeof(tensor), TENSORS);#else x = (tensor *)MALLOC(sizeof(tensor), TENSORS); if (FINITE_RNK(rnk) && rnk > 0) x->dims = (iodim *)MALLOC(sizeof(iodim) * rnk, TENSORS); else x->dims = 0;#endif x->rnk = rnk; return x;}
开发者ID:Aegisub,项目名称:fftw3,代码行数:29,
示例5: verify_rdft2void verify_rdft2(bench_problem *p, int rounds, double tol, errors *e){ C *inA, *inB, *inC, *outA, *outB, *outC, *tmp; int n, vecn, N; dofft_rdft2_closure k; BENCH_ASSERT(p->kind == PROBLEM_REAL); if (!FINITE_RNK(p->sz->rnk) || !FINITE_RNK(p->vecsz->rnk)) return; /* give up */ k.k.apply = rdft2_apply; k.k.recopy_input = 0; k.p = p; if (rounds == 0) rounds = 20; /* default value */ n = tensor_sz(p->sz); vecn = tensor_sz(p->vecsz); N = n * vecn; inA = (C *) bench_malloc(N * sizeof(C)); inB = (C *) bench_malloc(N * sizeof(C)); inC = (C *) bench_malloc(N * sizeof(C)); outA = (C *) bench_malloc(N * sizeof(C)); outB = (C *) bench_malloc(N * sizeof(C)); outC = (C *) bench_malloc(N * sizeof(C)); tmp = (C *) bench_malloc(N * sizeof(C)); e->i = impulse(&k.k, n, vecn, inA, inB, inC, outA, outB, outC, tmp, rounds, tol); e->l = linear(&k.k, 1, N, inA, inB, inC, outA, outB, outC, tmp, rounds, tol); e->s = 0.0; if (p->sign < 0) e->s = dmax(e->s, tf_shift(&k.k, 1, p->sz, n, vecn, p->sign, inA, inB, outA, outB, tmp, rounds, tol, TIME_SHIFT)); else e->s = dmax(e->s, tf_shift(&k.k, 1, p->sz, n, vecn, p->sign, inA, inB, outA, outB, tmp, rounds, tol, FREQ_SHIFT)); if (!p->in_place && !p->destroy_input) preserves_input(&k.k, p->sign < 0 ? mkreal : mkhermitian1, N, inA, inB, outB, rounds); bench_free(tmp); bench_free(outC); bench_free(outB); bench_free(outA); bench_free(inC); bench_free(inB); bench_free(inA);}
开发者ID:8cH9azbsFifZ,项目名称:wspr,代码行数:57,
示例6: applicable0static int applicable0(const solver *ego_, const problem *p_, int *rp){ const problem_rdft *p = (const problem_rdft *) p_; const S *ego = (const S *)ego_; return (1 && FINITE_RNK(p->sz->rnk) && FINITE_RNK(p->vecsz->rnk) && p->sz->rnk >= 2 && picksplit(ego, p->sz, rp) );}
开发者ID:8cH9azbsFifZ,项目名称:wspr,代码行数:10,
示例7: Xtensor *X(tensor_append)(const tensor *a, const tensor *b){ if (!FINITE_RNK(a->rnk) || !FINITE_RNK(b->rnk)) { return X(mktensor)(RNK_MINFTY); } else { tensor *x = X(mktensor)(a->rnk + b->rnk); dimcpy(x->dims, a->dims, a->rnk); dimcpy(x->dims + a->rnk, b->dims, b->rnk); return x; }}
开发者ID:Aegisub,项目名称:fftw3,代码行数:11,
示例8: while/* do what I mean */static bench_tensor *dwim(bench_tensor *t, bench_iodim **last_iodim, n_transform nti, n_transform nto, bench_iodim *dt){ int i; bench_iodim *d, *d1; if (!FINITE_RNK(t->rnk) || t->rnk < 1) return t; i = t->rnk; d1 = *last_iodim; while (--i >= 0) { d = t->dims + i; if (!d->is) d->is = d1->is * transform_n(d1->n, d1==dt ? nti : SAME); if (!d->os) d->os = d1->os * transform_n(d1->n, d1==dt ? nto : SAME); d1 = d; } *last_iodim = d1; return t;}
开发者ID:376473984,项目名称:fftw3,代码行数:26,
示例9: dimcpystatic void dimcpy(iodim *dst, const iodim *src, int rnk){ int i; if (FINITE_RNK(rnk)) for (i = 0; i < rnk; ++i) dst[i] = src[i];}
开发者ID:Aegisub,项目名称:fftw3,代码行数:7,
示例10: fftw_tensor_contiguous/* Like tensor_copy, but eliminate n == 1 dimensions, which never affect any transform or transform vector. Also, we sort the tensor into a canonical order of decreasing is. In general, processing a loop/array in order of decreasing stride will improve locality; sorting also makes the analysis in fftw_tensor_contiguous (below) easier. The choice of is over os is mostly arbitrary, and hopefully shouldn't affect things much. Normally, either the os will be in the same order as is (for e.g. multi-dimensional transforms) or will be in opposite order (e.g. for Cooley-Tukey recursion). (Both forward and backwards traversal of the tensor are considered e.g. by vrank-geq1, so sorting in increasing vs. decreasing order is not really important.) */tensor *X(tensor_compress)(const tensor *sz){ int i, rnk; tensor *x; A(FINITE_RNK(sz->rnk)); for (i = rnk = 0; i < sz->rnk; ++i) { A(sz->dims[i].n > 0); if (sz->dims[i].n != 1) ++rnk; } x = X(mktensor)(rnk); for (i = rnk = 0; i < sz->rnk; ++i) { if (sz->dims[i].n != 1) x->dims[rnk++] = sz->dims[i]; } if (rnk > 1) { qsort(x->dims, (size_t)x->rnk, sizeof(iodim), (int (*)(const void *, const void *))X(dimcmp)); } return x;}
开发者ID:bambang,项目名称:vsipl,代码行数:39,
示例11: Aproblem *X(mkproblem_dft)(const tensor *sz, const tensor *vecsz, R *ri, R *ii, R *ro, R *io){ problem_dft *ego = (problem_dft *)X(mkproblem)(sizeof(problem_dft), &padt); A((ri == ro) == (ii == io)); /* both in place or both out of place */ A(X(tensor_kosherp)(sz)); A(X(tensor_kosherp)(vecsz)); /* enforce pointer equality if untainted pointers are equal */ if (UNTAINT(ri) == UNTAINT(ro)) ri = ro = JOIN_TAINT(ri, ro); if (UNTAINT(ii) == UNTAINT(io)) ii = io = JOIN_TAINT(ii, io); /* more correctness conditions: */ A(TAINTOF(ri) == TAINTOF(ii)); A(TAINTOF(ro) == TAINTOF(io)); ego->sz = X(tensor_compress)(sz); ego->vecsz = X(tensor_compress_contiguous)(vecsz); ego->ri = ri; ego->ii = ii; ego->ro = ro; ego->io = io; A(FINITE_RNK(ego->sz->rnk)); return &(ego->super);}
开发者ID:abrahamneben,项目名称:orbcomm_beam_mapping,代码行数:30,
示例12: applicable0static int applicable0(const solver *ego_, const problem *p_, const planner *plnr){ const S *ego = (const S *) ego_; const problem_rdft *p = (const problem_rdft *) p_; return (1 && FINITE_RNK(p->vecsz->rnk) /* problem must be a nontrivial transform, not just a copy */ && p->sz->rnk > 0 && (0 /* problem must be in-place & require some rearrangement of the data */ || (p->I == p->O && !(X(tensor_inplace_strides2)(p->sz, p->vecsz))) /* or problem must be out of place, transforming from stride 1/2 to bigger stride, for apply_after */ || (p->I != p->O && ego->adt->apply == apply_after && !NO_DESTROY_INPUTP(plnr) && X(tensor_min_istride)(p->sz) <= 2 && X(tensor_min_ostride)(p->sz) > 2) /* or problem must be out of place, transforming to stride 1/2 from bigger stride, for apply_before */ || (p->I != p->O && ego->adt->apply == apply_before && X(tensor_min_ostride)(p->sz) <= 2 && X(tensor_min_istride)(p->sz) > 2) ) );}
开发者ID:376473984,项目名称:fftw3,代码行数:34,
示例13: applicable0static int applicable0(const problem *p_){ const problem_dft *p = (const problem_dft *) p_; return ((p->sz->rnk == 1 && p->vecsz->rnk == 0) || (p->sz->rnk == 0 && FINITE_RNK(p->vecsz->rnk)) );}
开发者ID:376473984,项目名称:fftw3,代码行数:7,
示例14: tensor_rowmajor_transposedpstatic int tensor_rowmajor_transposedp(bench_tensor *t){ bench_iodim *d; int i; BENCH_ASSERT(FINITE_RNK(t->rnk)); if (t->rnk < 2) return 0; d = t->dims; if (d[0].is != d[1].is * d[1].n || d[0].os != d[1].is || d[1].os != d[0].os * d[0].n) return 0; if (t->rnk > 2 && d[1].is != d[2].is * d[2].n) return 0; for (i = 2; i + 1 < t->rnk; ++i) { d = t->dims + i; if (d[0].is != d[1].is * d[1].n || d[0].os != d[1].os * d[1].n) return 0; } if (t->rnk > 2 && t->dims[t->rnk-1].is != t->dims[t->rnk-1].os) return 0; return 1;}
开发者ID:dstuck,项目名称:tinker_integrated_PIMC,代码行数:27,
示例15: Aproblem *X(mkproblem_rdft2)(const tensor *sz, const tensor *vecsz, R *r0, R *r1, R *cr, R *ci, rdft_kind kind){ problem_rdft2 *ego; A(kind == R2HC || kind == R2HCII || kind == HC2R || kind == HC2RIII); A(X(tensor_kosherp)(sz)); A(X(tensor_kosherp)(vecsz)); A(FINITE_RNK(sz->rnk)); /* require in-place problems to use r0 == cr */ if (UNTAINT(r0) == UNTAINT(ci)) return X(mkproblem_unsolvable)(); /* FIXME: should check UNTAINT(r1) == UNTAINT(cr) but only if odd elements exist, which requires compressing the tensors first */ if (UNTAINT(r0) == UNTAINT(cr)) r0 = cr = JOIN_TAINT(r0, cr); ego = (problem_rdft2 *)X(mkproblem)(sizeof(problem_rdft2), &padt); if (sz->rnk > 1) { /* have to compress rnk-1 dims separately, ugh */ tensor *szc = X(tensor_copy_except)(sz, sz->rnk - 1); tensor *szr = X(tensor_copy_sub)(sz, sz->rnk - 1, 1); tensor *szcc = X(tensor_compress)(szc); if (szcc->rnk > 0) ego->sz = X(tensor_append)(szcc, szr); else ego->sz = X(tensor_compress)(szr); X(tensor_destroy2)(szc, szr); X(tensor_destroy)(szcc); } else { ego->sz = X(tensor_compress)(sz); } ego->vecsz = X(tensor_compress_contiguous)(vecsz); ego->r0 = r0; ego->r1 = r1; ego->cr = cr; ego->ci = ci; ego->kind = kind; A(FINITE_RNK(ego->sz->rnk)); return &(ego->super);}
开发者ID:Aegisub,项目名称:fftw3,代码行数:47,
示例16: transpose_tensorstatic void transpose_tensor(bench_tensor *t){ if (!FINITE_RNK(t->rnk) || t->rnk < 2) return; t->dims[0].os = t->dims[1].os; t->dims[1].os = t->dims[0].os * t->dims[0].n;}
开发者ID:376473984,项目名称:fftw3,代码行数:8,
示例17: XM/* Return whether sz is distributed for k according to a simple 1d block distribution in the first or second dimensions */int XM(is_block1d)(const dtensor *sz, block_kind k){ int i; if (!FINITE_RNK(sz->rnk)) return 0; for (i = 0; i < sz->rnk && num_blocks_kind(sz->dims + i, k) == 1; ++i) ; return(i < sz->rnk && i < 2 && XM(is_local_after)(i + 1, sz, k));}
开发者ID:Aegisub,项目名称:fftw3,代码行数:10,
示例18: applicablestatic int applicable(const solver *ego_, const problem *p_){ const problem_dft *p = (const problem_dft *) p_; UNUSED(ego_); return 0 /* case 1 : -infty vector rank */ || (!FINITE_RNK(p->vecsz->rnk)) /* case 2 : rank-0 in-place dft */ || (1 && p->sz->rnk == 0 && FINITE_RNK(p->vecsz->rnk) && p->ro == p->ri && X(tensor_inplace_strides)(p->vecsz) );}
开发者ID:dstuck,项目名称:tinker_integrated_PIMC,代码行数:18,
示例19: A/* Like X(tensor_copy), but copy only rnk dimensions starting with start_dim. */tensor *X(tensor_copy_sub)(const tensor *sz, int start_dim, int rnk){ tensor *x; A(FINITE_RNK(sz->rnk) && start_dim + rnk <= sz->rnk); x = X(mktensor)(rnk); dimcpy(x->dims, sz->dims + start_dim, rnk); return x;}
开发者ID:Aegisub,项目名称:fftw3,代码行数:11,
示例20: Aproblem *XM(mkproblem_rdft)(const dtensor *sz, INT vn, R *I, R *O, MPI_Comm comm, const rdft_kind *kind, unsigned flags){ problem_mpi_rdft *ego; int i, rnk = sz->rnk; int n_pes; A(XM(dtensor_validp)(sz) && FINITE_RNK(sz->rnk)); MPI_Comm_size(comm, &n_pes); A(n_pes >= XM(num_blocks_total)(sz, IB) && n_pes >= XM(num_blocks_total)(sz, OB)); A(vn >= 0);#if defined(STRUCT_HACK_KR) ego = (problem_mpi_rdft *) X(mkproblem)(sizeof(problem_mpi_rdft) + sizeof(rdft_kind) * (rnk > 0 ? rnk - 1 : 0), &padt);#elif defined(STRUCT_HACK_C99) ego = (problem_mpi_rdft *) X(mkproblem)(sizeof(problem_mpi_rdft) + sizeof(rdft_kind) * rnk, &padt);#else ego = (problem_mpi_rdft *) X(mkproblem)(sizeof(problem_mpi_rdft), &padt); ego->kind = (rdft_kind *) MALLOC(sizeof(rdft_kind) * rnk, PROBLEMS);#endif /* enforce pointer equality if untainted pointers are equal */ if (UNTAINT(I) == UNTAINT(O)) I = O = JOIN_TAINT(I, O); ego->sz = XM(dtensor_canonical)(sz, 0); ego->vn = vn; ego->I = I; ego->O = O; for (i = 0; i< ego->sz->rnk; ++i) ego->kind[i] = kind[i]; /* canonicalize: replace TRANSPOSED_IN with TRANSPOSED_OUT by swapping the first two dimensions (for rnk > 1) */ if ((flags & TRANSPOSED_IN) && ego->sz->rnk > 1) { rdft_kind k = ego->kind[0]; ddim dim0 = ego->sz->dims[0]; ego->sz->dims[0] = ego->sz->dims[1]; ego->sz->dims[1] = dim0; ego->kind[0] = ego->kind[1]; ego->kind[1] = k; flags &= ~TRANSPOSED_IN; flags ^= TRANSPOSED_OUT; } ego->flags = flags; MPI_Comm_dup(comm, &ego->comm); return &(ego->super);}
开发者ID:phillipstanleymarbell,项目名称:sunflower-simulator,代码行数:56,
示例21: applicable0static int applicable0(const solver *ego_, const problem *p_, const planner *plnr, int *pdim0, int *pdim1){ const problem_dft *p = (const problem_dft *) p_; UNUSED(ego_); UNUSED(plnr); return (1 && FINITE_RNK(p->vecsz->rnk) && FINITE_RNK(p->sz->rnk) /* FIXME: can/should we relax this constraint? */ && X(tensor_inplace_strides2)(p->vecsz, p->sz) && pickdim(p->vecsz, p->sz, pdim0, pdim1) /* output should not *already* include the transpose (in which case we duplicate the regular indirect.c) */ && (p->sz->dims[*pdim1].os != p->vecsz->dims[*pdim0].is) );}
开发者ID:Aegisub,项目名称:fftw3,代码行数:20,
示例22: applicablestatic int applicable(const S *ego, const problem *p_){ const problem_rdft *p = (const problem_rdft *) p_; P pln; return (1 && p->sz->rnk == 0 && FINITE_RNK(p->vecsz->rnk) && fill_iodim(&pln, p) && ego->applicable(&pln, p) );}
开发者ID:376473984,项目名称:fftw3,代码行数:11,
示例23: tensor_inplace_copy/* return true (1) iff *any* strides of sz decrease when we tensor_inplace_copy(sz, k). */static int tensor_strides_decrease(const tensor *sz, inplace_kind k){ if (FINITE_RNK(sz->rnk)) { int i; for (i = 0; i < sz->rnk; ++i) if ((sz->dims[i].os - sz->dims[i].is) * (k == INPLACE_OS ? (INT)1 : (INT)-1) < 0) return 1; } return 0;}
开发者ID:dpl0,项目名称:bioinformatics,代码行数:13,
示例24: Xint X(tensor_inplace_strides)(const tensor *sz){ int i; A(FINITE_RNK(sz->rnk)); for (i = 0; i < sz->rnk; ++i) { const iodim *p = sz->dims + i; if (p->is != p->os) return 0; } return 1;}
开发者ID:dpl0,项目名称:bioinformatics,代码行数:11,
示例25: transpose_tensorstatic void transpose_tensor(bench_tensor *t){ int i; if (!FINITE_RNK(t->rnk) || t->rnk < 1) return; t->dims[0].os = t->dims[t->rnk - 1].os; for (i = 1; i < t->rnk; ++i) t->dims[i].os = t->dims[i-1].os * t->dims[i-1].n;}
开发者ID:OS2World,项目名称:MM-SOUND-PM123,代码行数:11,
示例26: rowmajor_kosherpstatic int rowmajor_kosherp(int rnk, const int *n){ int i; if (!FINITE_RNK(rnk)) return 0; if (rnk < 0) return 0; for (i = 0; i < rnk; ++i) if (n[i] <= 0) return 0; return 1;}
开发者ID:exic,项目名称:last.fm-dbus,代码行数:12,
注:本文中的FINITE_RNK函数示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 C++ FIRE_RING函数代码示例 C++ FIND_HOOK函数代码示例 |