您当前的位置:首页 > IT编程 > C++
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:C++ IGRAPH_CHECK函数代码示例

51自学网 2021-06-01 21:28:50
  C++
这篇教程C++ IGRAPH_CHECK函数代码示例写得很实用,希望能帮到您。

本文整理汇总了C++中IGRAPH_CHECK函数的典型用法代码示例。如果您正苦于以下问题:C++ IGRAPH_CHECK函数的具体用法?C++ IGRAPH_CHECK怎么用?C++ IGRAPH_CHECK使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。

在下文中一共展示了IGRAPH_CHECK函数的30个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C++代码示例。

示例1: igraph_i_bridges_rec

static int igraph_i_bridges_rec(const igraph_t *graph, const igraph_inclist_t *il, igraph_integer_t u, igraph_integer_t *time, igraph_vector_t *bridges, igraph_vector_bool_t *visited, igraph_vector_int_t *disc, igraph_vector_int_t *low, igraph_vector_int_t *parent) {    igraph_vector_int_t *incedges;    long nc; /* neighbour count */    long i;    VECTOR(*visited)[u] = 1;    *time += 1;    VECTOR(*disc)[u] = *time;    VECTOR(*low)[u] = *time;    incedges = igraph_inclist_get(il, u);    nc = igraph_vector_int_size(incedges);    for (i=0; i < nc; ++i) {        long edge = (long) VECTOR(*incedges)[i];        igraph_integer_t v = IGRAPH_TO(graph, edge) == u ? IGRAPH_FROM(graph, edge) : IGRAPH_TO(graph, edge);        if (! VECTOR(*visited)[v]) {            VECTOR(*parent)[v] = u;            IGRAPH_CHECK(igraph_i_bridges_rec(graph, il, v, time, bridges, visited, disc, low, parent));            VECTOR(*low)[u] = VECTOR(*low)[u] < VECTOR(*low)[v] ? VECTOR(*low)[u] : VECTOR(*low)[v];            if (VECTOR(*low)[v] > VECTOR(*disc)[u])                IGRAPH_CHECK(igraph_vector_push_back(bridges, edge));        }        else if (v != VECTOR(*parent)[u]) {            VECTOR(*low)[u] = VECTOR(*low)[u] < VECTOR(*disc)[v] ? VECTOR(*low)[u] : VECTOR(*disc)[v];        }    }    return IGRAPH_SUCCESS;}
开发者ID:igraph,项目名称:igraph,代码行数:34,


示例2: igraph_adjlist_init

int igraph_adjlist_init(const igraph_t *graph, igraph_adjlist_t *al, 			  igraph_neimode_t mode) {  long int i;  if (mode != IGRAPH_IN && mode != IGRAPH_OUT && mode != IGRAPH_ALL) {    IGRAPH_ERROR("Cannot create adjlist view", IGRAPH_EINVMODE);  }  if (!igraph_is_directed(graph)) { mode=IGRAPH_ALL; }  al->length=igraph_vcount(graph);  al->adjs=igraph_Calloc(al->length, igraph_vector_t);  if (al->adjs == 0) {    IGRAPH_ERROR("Cannot create adjlist view", IGRAPH_ENOMEM);  }  IGRAPH_FINALLY(igraph_adjlist_destroy, al);  for (i=0; i<al->length; i++) {    IGRAPH_ALLOW_INTERRUPTION();    IGRAPH_CHECK(igraph_vector_init(&al->adjs[i], 0));    IGRAPH_CHECK(igraph_neighbors(graph, &al->adjs[i], i, mode));  }  IGRAPH_FINALLY_CLEAN(1);  return 0;}
开发者ID:CansenJIANG,项目名称:igraph,代码行数:26,


示例3: igraph_i_largest_cliques_store

int igraph_i_largest_cliques_store(const igraph_vector_t* clique, void* data, igraph_bool_t* cont) {  igraph_vector_ptr_t* result = (igraph_vector_ptr_t*)data;  igraph_vector_t* vec;  long int i, n;  /* Is the current clique at least as large as the others that we have found? */  if (!igraph_vector_ptr_empty(result)) {    n = igraph_vector_size(clique);    if (n < igraph_vector_size(VECTOR(*result)[0]))      return IGRAPH_SUCCESS;    if (n > igraph_vector_size(VECTOR(*result)[0])) {      for (i = 0; i < igraph_vector_ptr_size(result); i++)        igraph_vector_destroy(VECTOR(*result)[i]);      igraph_vector_ptr_free_all(result);      igraph_vector_ptr_resize(result, 0);    }  }  vec = igraph_Calloc(1, igraph_vector_t);  if (vec == 0)    IGRAPH_ERROR("cannot allocate memory for storing next clique", IGRAPH_ENOMEM);  IGRAPH_CHECK(igraph_vector_copy(vec, clique));  IGRAPH_CHECK(igraph_vector_ptr_push_back(result, vec));  return IGRAPH_SUCCESS;}
开发者ID:CansenJIANG,项目名称:igraph,代码行数:28,


示例4: igraph_empty_attrs

/**  * /ingroup interface * /function igraph_empty_attrs * /brief Creates an empty graph with some vertices, no edges and some graph attributes. * * </para><para> * Use this instead of /ref igraph_empty() if you wish to add some graph * attributes right after initialization. This function is currently * not very interesting for the ordinary user, just supply 0 here or  * use /ref igraph_empty(). * /param graph Pointer to a not-yet initialized graph object. * /param n The number of vertices in the graph, a non-negative *          integer number is expected. * /param directed Whether the graph is directed or not. * /param attr The attributes.  * /return Error code: *         /c IGRAPH_EINVAL: invalid number of vertices. *  * Time complexity: O(|V|) for a graph with * |V| vertices (and no edges). */int igraph_empty_attrs(igraph_t *graph, igraph_integer_t n, igraph_bool_t directed, void* attr) {  if (n<0) {    IGRAPH_ERROR("cannot create empty graph with negative number of vertices",		  IGRAPH_EINVAL);  }    if (!IGRAPH_FINITE(n)) {    IGRAPH_ERROR("number of vertices is not finite (NA, NaN or Inf)", IGRAPH_EINVAL);  }  graph->n=0;  graph->directed=directed;  IGRAPH_VECTOR_INIT_FINALLY(&graph->from, 0);  IGRAPH_VECTOR_INIT_FINALLY(&graph->to, 0);  IGRAPH_VECTOR_INIT_FINALLY(&graph->oi, 0);  IGRAPH_VECTOR_INIT_FINALLY(&graph->ii, 0);  IGRAPH_VECTOR_INIT_FINALLY(&graph->os, 1);  IGRAPH_VECTOR_INIT_FINALLY(&graph->is, 1);  VECTOR(graph->os)[0]=0;  VECTOR(graph->is)[0]=0;  /* init attributes */  graph->attr=0;  IGRAPH_CHECK(igraph_i_attribute_init(graph, attr));  /* add the vertices */  IGRAPH_CHECK(igraph_add_vertices(graph, n, 0));    IGRAPH_FINALLY_CLEAN(6);  return 0;}
开发者ID:AlexWoroschilow,项目名称:wurst-alphabet,代码行数:54,


示例5: igraph_add_vertices

/** * /ingroup interface * /function igraph_add_vertices * /brief Adds vertices to a graph.  * * </para><para> * This function invalidates all iterators. * * /param graph The graph object to extend. * /param nv Non-negative integer giving the number of  *           vertices to add. * /param attr The attributes of the new vertices, only used by  *           high level interfaces, you can supply 0 here. * /return Error code:  *         /c IGRAPH_EINVAL: invalid number of new *         vertices.  * * Time complexity: O(|V|) where * |V| is  * the number of vertices in the /em new, extended graph. */int igraph_add_vertices(igraph_t *graph, igraph_integer_t nv, void *attr) {  long int ec=igraph_ecount(graph);  long int i;  if (nv < 0) {    IGRAPH_ERROR("cannot add negative number of vertices", IGRAPH_EINVAL);  }  IGRAPH_CHECK(igraph_vector_reserve(&graph->os, graph->n+nv+1));  IGRAPH_CHECK(igraph_vector_reserve(&graph->is, graph->n+nv+1));    igraph_vector_resize(&graph->os, graph->n+nv+1); /* reserved */  igraph_vector_resize(&graph->is, graph->n+nv+1); /* reserved */  for (i=graph->n+1; i<graph->n+nv+1; i++) {    VECTOR(graph->os)[i]=ec;    VECTOR(graph->is)[i]=ec;  }    graph->n += nv;       if (graph->attr) {    IGRAPH_CHECK(igraph_i_attribute_add_vertices(graph, nv, attr));  }  return 0;}
开发者ID:AlexWoroschilow,项目名称:wurst-alphabet,代码行数:47,


示例6: igraph_similarity_inverse_log_weighted

int igraph_similarity_inverse_log_weighted(const igraph_t *graph,  igraph_matrix_t *res, const igraph_vs_t vids, igraph_neimode_t mode) {  igraph_vector_t weights;  igraph_neimode_t mode0;  long int i, no_of_nodes;  switch (mode) {    case IGRAPH_OUT: mode0 = IGRAPH_IN; break;    case IGRAPH_IN: mode0 = IGRAPH_OUT; break;    default: mode0 = IGRAPH_ALL;  }  no_of_nodes = igraph_vcount(graph);  IGRAPH_VECTOR_INIT_FINALLY(&weights, no_of_nodes);  IGRAPH_CHECK(igraph_degree(graph, &weights, igraph_vss_all(), mode0, 1));  for (i=0; i < no_of_nodes; i++) {    if (VECTOR(weights)[i] > 1)      VECTOR(weights)[i] = 1.0 / log(VECTOR(weights)[i]);  }  IGRAPH_CHECK(igraph_cocitation_real(graph, res, vids, mode0, &weights));  igraph_vector_destroy(&weights);  IGRAPH_FINALLY_CLEAN(1);  return 0;}
开发者ID:AlessiaWent,项目名称:igraph,代码行数:26,


示例7: igraph_i_eigen_matrix_lapack_common

int igraph_i_eigen_matrix_lapack_common(const igraph_matrix_t *A,					const igraph_eigen_which_t *which, 					igraph_vector_complex_t *values,					igraph_matrix_complex_t *vectors) {  igraph_vector_t valuesreal, valuesimag;  igraph_matrix_t vectorsright, *myvectors= vectors ? &vectorsright : 0;  int n=(int) igraph_matrix_nrow(A);  int info=1;  IGRAPH_VECTOR_INIT_FINALLY(&valuesreal, n);  IGRAPH_VECTOR_INIT_FINALLY(&valuesimag, n);  if (vectors) { IGRAPH_MATRIX_INIT_FINALLY(&vectorsright, n, n); }  IGRAPH_CHECK(igraph_lapack_dgeev(A, &valuesreal, &valuesimag, 				   /*vectorsleft=*/ 0, myvectors, &info));  IGRAPH_CHECK(igraph_i_eigen_matrix_lapack_reorder(&valuesreal, 						    &valuesimag, 						    myvectors, which, values,						    vectors));    if (vectors) {     igraph_matrix_destroy(&vectorsright);    IGRAPH_FINALLY_CLEAN(1);  }    igraph_vector_destroy(&valuesimag);  igraph_vector_destroy(&valuesreal);  IGRAPH_FINALLY_CLEAN(2);  return 0;  }
开发者ID:AlessiaWent,项目名称:igraph,代码行数:33,


示例8: igraph_attribute_combination

int igraph_attribute_combination(igraph_attribute_combination_t *comb, ...) {  va_list ap;  IGRAPH_CHECK(igraph_attribute_combination_init(comb));    va_start(ap, comb);  while (1) {     void *func=0;    igraph_attribute_combination_type_t type;    const char *name;        name=va_arg(ap, const char *);        if (name == IGRAPH_NO_MORE_ATTRIBUTES) { break; }        type=(igraph_attribute_combination_type_t)va_arg(ap, int);    if (type == IGRAPH_ATTRIBUTE_COMBINE_FUNCTION) {      func=va_arg(ap, void*);          }    if (strlen(name)==0) { name=0; }        IGRAPH_CHECK(igraph_attribute_combination_add(comb, name, type, func));  }
开发者ID:AlessiaWent,项目名称:igraph,代码行数:25,


示例9: igraph_similarity_jaccard_es

/** * /ingroup structural * /function igraph_similarity_jaccard_es * /brief Jaccard similarity coefficient for a given edge selector. * * </para><para> * The Jaccard similarity coefficient of two vertices is the number of common * neighbors divided by the number of vertices that are neighbors of at * least one of the two vertices being considered. This function calculates * the pairwise Jaccard similarities for the endpoints of edges in a given edge * selector. * * /param graph The graph object to analyze * /param res Pointer to a vector, the result of the calculation will *        be stored here. The number of elements is the same as the number *        of edges in /p es. * /param es An edge selector that specifies the edges to be included in the *        result. * /param mode The type of neighbors to be used for the calculation in *        directed graphs. Possible values: *        /clist *        /cli IGRAPH_OUT *          the outgoing edges will be considered for each node. *        /cli IGRAPH_IN *          the incoming edges will be considered for each node. *        /cli IGRAPH_ALL *          the directed graph is considered as an undirected one for the *          computation. *        /endclist * /param loops Whether to include the vertices themselves in the neighbor *        sets. * /return Error code: *        /clist *        /cli IGRAPH_ENOMEM *           not enough memory for temporary data. *        /cli IGRAPH_EINVVID *           invalid vertex id passed. *        /cli IGRAPH_EINVMODE *           invalid mode argument. *        /endclist *  * Time complexity: O(nd), n is the number of edges in the edge selector, d is * the (maximum) degree of the vertices in the graph. * * /sa /ref igraph_similarity_jaccard() and /ref igraph_similarity_jaccard_pairs() *   to calculate the Jaccard similarity between all pairs of a vertex set or *   some selected vertex pairs, or /ref igraph_similarity_dice(), *   /ref igraph_similarity_dice_pairs() and /ref igraph_similarity_dice_es() for a *   measure very similar to the Jaccard coefficient *  * /example examples/simple/igraph_similarity.c */int igraph_similarity_jaccard_es(const igraph_t *graph, igraph_vector_t *res,	const igraph_es_t es, igraph_neimode_t mode, igraph_bool_t loops) {  igraph_vector_t v;  igraph_eit_t eit;  IGRAPH_VECTOR_INIT_FINALLY(&v, 0);  IGRAPH_CHECK(igraph_eit_create(graph, es, &eit));  IGRAPH_FINALLY(igraph_eit_destroy, &eit);  while (!IGRAPH_EIT_END(eit)) {    long int eid = IGRAPH_EIT_GET(eit);    igraph_vector_push_back(&v, IGRAPH_FROM(graph, eid));    igraph_vector_push_back(&v, IGRAPH_TO(graph, eid));    IGRAPH_EIT_NEXT(eit);  }  igraph_eit_destroy(&eit);  IGRAPH_FINALLY_CLEAN(1);  IGRAPH_CHECK(igraph_similarity_jaccard_pairs(graph, res, &v, mode, loops));  igraph_vector_destroy(&v);  IGRAPH_FINALLY_CLEAN(1);  return IGRAPH_SUCCESS;}
开发者ID:AlessiaWent,项目名称:igraph,代码行数:78,


示例10: igraph_inclist_init

int igraph_inclist_init(const igraph_t *graph, 			      igraph_inclist_t *il, 			      igraph_neimode_t mode) {  long int i;  if (mode != IGRAPH_IN && mode != IGRAPH_OUT && mode != IGRAPH_ALL) {    IGRAPH_ERROR("Cannot create incidence list view", IGRAPH_EINVMODE);  }  if (!igraph_is_directed(graph)) { mode=IGRAPH_ALL; }  il->length=igraph_vcount(graph);  il->incs=igraph_Calloc(il->length, igraph_vector_t);  if (il->incs == 0) {    IGRAPH_ERROR("Cannot create incidence list view", IGRAPH_ENOMEM);  }  IGRAPH_FINALLY(igraph_inclist_destroy, il);    for (i=0; i<il->length; i++) {    IGRAPH_ALLOW_INTERRUPTION();    IGRAPH_CHECK(igraph_vector_init(&il->incs[i], 0));    IGRAPH_CHECK(igraph_incident(graph, &il->incs[i], i, mode));  }    IGRAPH_FINALLY_CLEAN(1);  return 0;}
开发者ID:CansenJIANG,项目名称:igraph,代码行数:27,


示例11: igraph_get_edgelist

int igraph_get_edgelist(const igraph_t *graph, igraph_vector_t *res, igraph_bool_t bycol) {  igraph_eit_t edgeit;  long int no_of_edges=igraph_ecount(graph);  long int vptr=0;  igraph_integer_t from, to;    IGRAPH_CHECK(igraph_vector_resize(res, no_of_edges*2));  IGRAPH_CHECK(igraph_eit_create(graph, igraph_ess_all(IGRAPH_EDGEORDER_ID),				 &edgeit));  IGRAPH_FINALLY(igraph_eit_destroy, &edgeit);    if (bycol) {    while (!IGRAPH_EIT_END(edgeit)) {      igraph_edge(graph, IGRAPH_EIT_GET(edgeit), &from, &to);      VECTOR(*res)[vptr]=from;      VECTOR(*res)[vptr+no_of_edges]=to;      vptr++;      IGRAPH_EIT_NEXT(edgeit);    }  } else {    while (!IGRAPH_EIT_END(edgeit)) {      igraph_edge(graph, IGRAPH_EIT_GET(edgeit), &from, &to);      VECTOR(*res)[vptr++]=from;      VECTOR(*res)[vptr++]=to;      IGRAPH_EIT_NEXT(edgeit);    }  }    igraph_eit_destroy(&edgeit);  IGRAPH_FINALLY_CLEAN(1);  return 0;}
开发者ID:AlexWoroschilow,项目名称:wurst-alphabet,代码行数:33,


示例12: igraph_is_separator

int igraph_is_separator(const igraph_t *graph, 			const igraph_vs_t candidate,			igraph_bool_t *res) {  long int no_of_nodes=igraph_vcount(graph);  igraph_vector_bool_t removed;  igraph_dqueue_t Q;  igraph_vector_t neis;  igraph_vit_t vit;  IGRAPH_CHECK(igraph_vit_create(graph, candidate, &vit));  IGRAPH_FINALLY(igraph_vit_destroy, &vit);  IGRAPH_CHECK(igraph_vector_bool_init(&removed, no_of_nodes));  IGRAPH_FINALLY(igraph_vector_bool_destroy, &removed);  IGRAPH_CHECK(igraph_dqueue_init(&Q, 100));  IGRAPH_FINALLY(igraph_dqueue_destroy, &Q);  IGRAPH_VECTOR_INIT_FINALLY(&neis, 0);  IGRAPH_CHECK(igraph_i_is_separator(graph, &vit, -1, res, &removed, 				     &Q, &neis, no_of_nodes));  igraph_vector_destroy(&neis);  igraph_dqueue_destroy(&Q);  igraph_vector_bool_destroy(&removed);  igraph_vit_destroy(&vit);  IGRAPH_FINALLY_CLEAN(4);  return 0;}
开发者ID:dacapo1142,项目名称:igraph,代码行数:29,


示例13: igraph_matrix_complex_imag

int igraph_matrix_complex_imag(const igraph_matrix_complex_t *v,			       igraph_matrix_t *imag) {  long int nrow=igraph_matrix_complex_nrow(v);  long int ncol=igraph_matrix_complex_ncol(v);  IGRAPH_CHECK(igraph_matrix_resize(imag, nrow, ncol));  IGRAPH_CHECK(igraph_vector_complex_imag(&v->data, &imag->data));  return 0;}
开发者ID:FEYoung,项目名称:rigraph,代码行数:8,


示例14: igraph_matrix_complex_real

int igraph_matrix_complex_real(const igraph_matrix_complex_t *v,			       igraph_matrix_t *real) {  long int nrow=igraph_matrix_complex_nrow(v);  long int ncol=igraph_matrix_complex_ncol(v);  IGRAPH_CHECK(igraph_matrix_resize(real, nrow, ncol));  IGRAPH_CHECK(igraph_vector_complex_real(&v->data, &real->data));  return 0;}
开发者ID:FEYoung,项目名称:rigraph,代码行数:8,


示例15: igraph_i_multilevel_simplify_multiple

/* removes multiple edges and returns new edge id's for each edge in |E|log|E| */int igraph_i_multilevel_simplify_multiple(igraph_t *graph, igraph_vector_t *eids) {  long int ecount = igraph_ecount(graph);  long int i, l = -1, last_from = -1, last_to = -1;  igraph_bool_t directed = igraph_is_directed(graph);  igraph_integer_t from, to;  igraph_vector_t edges;  igraph_i_multilevel_link *links;  /* Make sure there's enough space in eids to store the new edge IDs */  IGRAPH_CHECK(igraph_vector_resize(eids, ecount));  links = igraph_Calloc(ecount, igraph_i_multilevel_link);  if (links == 0) {    IGRAPH_ERROR("multi-level community structure detection failed", IGRAPH_ENOMEM);  }  IGRAPH_FINALLY(free, links);  for (i = 0; i < ecount; i++) {    igraph_edge(graph, (igraph_integer_t) i, &from, &to);    links[i].from = from;    links[i].to = to;    links[i].id = i;  }    qsort((void*)links, (size_t) ecount, sizeof(igraph_i_multilevel_link),      igraph_i_multilevel_link_cmp);  IGRAPH_VECTOR_INIT_FINALLY(&edges, 0);  for (i = 0; i < ecount; i++) {    if (links[i].from == last_from && links[i].to == last_to) {      VECTOR(*eids)[links[i].id] = l;      continue;    }    last_from = links[i].from;    last_to = links[i].to;    igraph_vector_push_back(&edges, last_from);    igraph_vector_push_back(&edges, last_to);    l++;    VECTOR(*eids)[links[i].id] = l;  }  free(links);  IGRAPH_FINALLY_CLEAN(1);  igraph_destroy(graph);  IGRAPH_CHECK(igraph_create(graph, &edges, igraph_vcount(graph), directed));  igraph_vector_destroy(&edges);  IGRAPH_FINALLY_CLEAN(1);  return 0;}
开发者ID:drishti95,项目名称:Randomisation,代码行数:57,


示例16: igraph_i_maximum_bipartite_matching_unweighted_relabel

int igraph_i_maximum_bipartite_matching_unweighted_relabel(const igraph_t* graph,    const igraph_vector_bool_t* types, igraph_vector_t* labels,    igraph_vector_long_t* match, igraph_bool_t smaller_set) {  long int i, j, n, no_of_nodes = igraph_vcount(graph), matched_to;  igraph_dqueue_long_t q;  igraph_vector_t neis;  debug("Running global relabeling./n");  /* Set all the labels to no_of_nodes first */  igraph_vector_fill(labels, no_of_nodes);  /* Allocate vector for neighbors */  IGRAPH_VECTOR_INIT_FINALLY(&neis, 0);  /* Create a FIFO for the BFS and initialize it with the unmatched rows   * (i.e. members of the larger set) */  IGRAPH_CHECK(igraph_dqueue_long_init(&q, 0));  IGRAPH_FINALLY(igraph_dqueue_long_destroy, &q);  for (i = 0; i < no_of_nodes; i++) {    if (VECTOR(*types)[i] != smaller_set && VECTOR(*match)[i] == -1) {      IGRAPH_CHECK(igraph_dqueue_long_push(&q, i));      VECTOR(*labels)[i] = 0;    }  }  /* Run the BFS */  while (!igraph_dqueue_long_empty(&q)) {    long int v = igraph_dqueue_long_pop(&q);    long int w;    IGRAPH_CHECK(igraph_neighbors(graph, &neis, (igraph_integer_t) v,				  IGRAPH_ALL));    n = igraph_vector_size(&neis);    //igraph_vector_shuffle(&neis);    for (j = 0; j < n; j++) {      w = (long int) VECTOR(neis)[j];      if (VECTOR(*labels)[w] == no_of_nodes) {        VECTOR(*labels)[w] = VECTOR(*labels)[v] + 1;        matched_to = VECTOR(*match)[w];        if (matched_to != -1 && VECTOR(*labels)[matched_to] == no_of_nodes) {          IGRAPH_CHECK(igraph_dqueue_long_push(&q, matched_to));          VECTOR(*labels)[matched_to] = VECTOR(*labels)[w] + 1;        }      }    }  }  printf("Inside relabel : ");  igraph_vector_print(labels);  igraph_dqueue_long_destroy(&q);  igraph_vector_destroy(&neis);  IGRAPH_FINALLY_CLEAN(2);  return IGRAPH_SUCCESS;}
开发者ID:ssaraogi07,项目名称:igraph_project,代码行数:56,


示例17: igraph_eigen_matrix_symmetric

int igraph_eigen_matrix_symmetric(const igraph_matrix_t *A,				  const igraph_sparsemat_t *sA,				  igraph_arpack_function_t *fun, int n,				  void *extra,				  igraph_eigen_algorithm_t algorithm,				  const igraph_eigen_which_t *which,				  igraph_arpack_options_t *options,				  igraph_arpack_storage_t *storage,				  igraph_vector_t *values, 				  igraph_matrix_t *vectors) {  IGRAPH_CHECK(igraph_i_eigen_checks(A, sA, fun, n));    if (which->pos != IGRAPH_EIGEN_LM &&       which->pos != IGRAPH_EIGEN_SM &&       which->pos != IGRAPH_EIGEN_LA &&       which->pos != IGRAPH_EIGEN_SA &&       which->pos != IGRAPH_EIGEN_BE &&       which->pos != IGRAPH_EIGEN_ALL &&       which->pos != IGRAPH_EIGEN_INTERVAL &&       which->pos != IGRAPH_EIGEN_SELECT) {    IGRAPH_ERROR("Invalid 'pos' position in 'which'", IGRAPH_EINVAL);  }  switch (algorithm) {  case IGRAPH_EIGEN_AUTO:    if (which->howmany==n || n < 100) {      IGRAPH_CHECK(igraph_i_eigen_matrix_symmetric_lapack(A, sA, fun, n,							  extra, which, 							  values, vectors));    } else {      IGRAPH_CHECK(igraph_i_eigen_matrix_symmetric_arpack(A, sA, fun, n, 							  extra, which, 							  options, storage,							  values, vectors));    }    break;  case IGRAPH_EIGEN_LAPACK:    IGRAPH_CHECK(igraph_i_eigen_matrix_symmetric_lapack(A, sA, fun, n ,extra,							which, values, 							vectors));    break;  case IGRAPH_EIGEN_ARPACK:    IGRAPH_CHECK(igraph_i_eigen_matrix_symmetric_arpack(A, sA, fun, n, extra,							which, options, 							storage,							values, vectors));    break;  default:    IGRAPH_ERROR("Unknown 'algorithm'", IGRAPH_EINVAL);  }      return 0;}
开发者ID:AlessiaWent,项目名称:igraph,代码行数:54,


示例18: igraph_i_maximal_or_largest_cliques_or_indsets

int igraph_i_maximal_or_largest_cliques_or_indsets(const igraph_t *graph,                                        igraph_vector_ptr_t *res,                                        igraph_integer_t *clique_number,                                        igraph_bool_t keep_only_largest,                                        igraph_bool_t complementer) {  igraph_i_max_ind_vsets_data_t clqdata;  long int no_of_nodes = igraph_vcount(graph), i;  if (igraph_is_directed(graph))    IGRAPH_WARNING("directionality of edges is ignored for directed graphs");  clqdata.matrix_size=no_of_nodes;  clqdata.keep_only_largest=keep_only_largest;  if (complementer)    IGRAPH_CHECK(igraph_adjlist_init_complementer(graph, &clqdata.adj_list, IGRAPH_ALL, 0));  else    IGRAPH_CHECK(igraph_adjlist_init(graph, &clqdata.adj_list, IGRAPH_ALL));  IGRAPH_FINALLY(igraph_adjlist_destroy, &clqdata.adj_list);  clqdata.IS = igraph_Calloc(no_of_nodes, igraph_integer_t);  if (clqdata.IS == 0)    IGRAPH_ERROR("igraph_i_maximal_or_largest_cliques_or_indsets failed", IGRAPH_ENOMEM);  IGRAPH_FINALLY(igraph_free, clqdata.IS);  IGRAPH_VECTOR_INIT_FINALLY(&clqdata.deg, no_of_nodes);  for (i=0; i<no_of_nodes; i++)    VECTOR(clqdata.deg)[i] = igraph_vector_size(igraph_adjlist_get(&clqdata.adj_list, i));  clqdata.buckets = igraph_Calloc(no_of_nodes+1, igraph_set_t);  if (clqdata.buckets == 0)    IGRAPH_ERROR("igraph_maximal_or_largest_cliques_or_indsets failed", IGRAPH_ENOMEM);  IGRAPH_FINALLY(igraph_i_free_set_array, clqdata.buckets);  for (i=0; i<no_of_nodes; i++)    IGRAPH_CHECK(igraph_set_init(&clqdata.buckets[i], 0));  if (res) igraph_vector_ptr_clear(res);    /* Do the show */  clqdata.largest_set_size=0;  IGRAPH_CHECK(igraph_i_maximal_independent_vertex_sets_backtrack(graph, res, &clqdata, 0));  /* Cleanup */  for (i=0; i<no_of_nodes; i++) igraph_set_destroy(&clqdata.buckets[i]);  igraph_adjlist_destroy(&clqdata.adj_list);  igraph_vector_destroy(&clqdata.deg);  igraph_free(clqdata.IS);  igraph_free(clqdata.buckets);  IGRAPH_FINALLY_CLEAN(4);  if (clique_number) *clique_number = clqdata.largest_set_size;  return 0;}
开发者ID:CansenJIANG,项目名称:igraph,代码行数:54,


示例19: igraph_random_walk

int igraph_random_walk(const igraph_t *graph, igraph_vector_t *walk,		       igraph_integer_t start, igraph_neimode_t mode,		       igraph_integer_t steps,		       igraph_random_walk_stuck_t stuck) {  /* TODO:     - multiple walks potentially from multiple start vertices     - weights  */  igraph_lazy_adjlist_t adj;  igraph_integer_t vc = igraph_vcount(graph);  igraph_integer_t i;  if (start < 0 || start >= vc) {    IGRAPH_ERROR("Invalid start vertex", IGRAPH_EINVAL);  }  if (steps < 0) {    IGRAPH_ERROR("Invalid number of steps", IGRAPH_EINVAL);  }  IGRAPH_CHECK(igraph_lazy_adjlist_init(graph, &adj, mode,					IGRAPH_DONT_SIMPLIFY));  IGRAPH_FINALLY(igraph_lazy_adjlist_destroy, &adj);  IGRAPH_CHECK(igraph_vector_resize(walk, steps));  RNG_BEGIN();  VECTOR(*walk)[0] = start;  for (i = 1; i < steps; i++) {    igraph_vector_t *neis;    igraph_integer_t nn;    neis = igraph_lazy_adjlist_get(&adj, start);    nn = igraph_vector_size(neis);    if (IGRAPH_UNLIKELY(nn == 0)) {      igraph_vector_resize(walk, i);      if (stuck == IGRAPH_RANDOM_WALK_STUCK_RETURN) {	break;      } else {	IGRAPH_ERROR("Random walk got stuck", IGRAPH_ERWSTUCK);      }    }    start = VECTOR(*walk)[i] = VECTOR(*neis)[ RNG_INTEGER(0, nn - 1) ];  }  RNG_END();  igraph_lazy_adjlist_destroy(&adj);  IGRAPH_FINALLY_CLEAN(1);  return 0;}
开发者ID:FEYoung,项目名称:rigraph,代码行数:54,


示例20: igraph_is_matching

/** * /function igraph_is_matching * Checks whether the given matching is valid for the given graph. * * This function checks a matching vector and verifies whether its length * matches the number of vertices in the given graph, its values are between * -1 (inclusive) and the number of vertices (exclusive), and whether there * exists a corresponding edge in the graph for every matched vertex pair. * For bipartite graphs, it also verifies whether the matched vertices are * in different parts of the graph. * * /param graph The input graph. It can be directed but the edge directions *              will be ignored. * /param types If the graph is bipartite and you are interested in bipartite *              matchings only, pass the vertex types here. If the graph is *              non-bipartite, simply pass /c NULL. * /param matching The matching itself. It must be a vector where element i *                 contains the ID of the vertex that vertex i is matched to, *                 or -1 if vertex i is unmatched. * /param result Pointer to a boolean variable, the result will be returned *               here. * * /sa /ref igraph_is_maximal_matching() if you are also interested in whether *     the matching is maximal (i.e. non-extendable). * * Time complexity: O(|V|+|E|) where |V| is the number of vertices and * |E| is the number of edges. *  * /example examples/simple/igraph_maximum_bipartite_matching.c */int igraph_is_matching(const igraph_t* graph,    const igraph_vector_bool_t* types, const igraph_vector_long_t* matching,    igraph_bool_t* result) {  long int i, j, no_of_nodes = igraph_vcount(graph);  igraph_bool_t conn;  /* Checking match vector length */  if (igraph_vector_long_size(matching) != no_of_nodes) {    *result = 0; return IGRAPH_SUCCESS;  }  for (i = 0; i < no_of_nodes; i++) {    j = VECTOR(*matching)[i];    /* Checking range of each element in the match vector */    if (j < -1 || j >= no_of_nodes) {      *result = 0; return IGRAPH_SUCCESS;    }    /* When i is unmatched, we're done */    if (j == -1)      continue;    /* Matches must be mutual */    if (VECTOR(*matching)[j] != i) {      *result = 0; return IGRAPH_SUCCESS;    }    /* Matched vertices must be connected */    IGRAPH_CHECK(igraph_are_connected(graph, (igraph_integer_t) i, 				      (igraph_integer_t) j, &conn));    if (!conn) {      /* Try the other direction -- for directed graphs */      IGRAPH_CHECK(igraph_are_connected(graph, (igraph_integer_t) j, 					(igraph_integer_t) i, &conn));      if (!conn) {        *result = 0; return IGRAPH_SUCCESS;      }    }  }  if (types != 0) {    /* Matched vertices must be of different types */    for (i = 0; i < no_of_nodes; i++) {      j = VECTOR(*matching)[i];      if (j == -1)        continue;      if (VECTOR(*types)[i] == VECTOR(*types)[j]) {        *result = 0; return IGRAPH_SUCCESS;      }    }  }  *result = 1;  return IGRAPH_SUCCESS;}
开发者ID:GennadyKharlam,项目名称:igraph,代码行数:83,


示例21: igraph_similarity_jaccard

/** * /ingroup structural * /function igraph_similarity_jaccard * /brief Jaccard similarity coefficient for the given vertices. * * </para><para> * The Jaccard similarity coefficient of two vertices is the number of common * neighbors divided by the number of vertices that are neighbors of at * least one of the two vertices being considered. This function calculates * the pairwise Jaccard similarities for some (or all) of the vertices. * * /param graph The graph object to analyze * /param res Pointer to a matrix, the result of the calculation will *        be stored here. The number of its rows and columns is the same *        as the number of vertex ids in /p vids. * /param vids The vertex ids of the vertices for which the *        calculation will be done. * /param mode The type of neighbors to be used for the calculation in *        directed graphs. Possible values: *        /clist *        /cli IGRAPH_OUT *          the outgoing edges will be considered for each node. *        /cli IGRAPH_IN *          the incoming edges will be considered for each node. *        /cli IGRAPH_ALL *          the directed graph is considered as an undirected one for the *          computation. *        /endclist * /param loops Whether to include the vertices themselves in the neighbor *        sets. * /return Error code: *        /clist *        /cli IGRAPH_ENOMEM *           not enough memory for temporary data. *        /cli IGRAPH_EINVVID *           invalid vertex id passed. *        /cli IGRAPH_EINVMODE *           invalid mode argument. *        /endclist *  * Time complexity: O(|V|^2 d), * |V| is the number of vertices in the vertex iterator given, d is the * (maximum) degree of the vertices in the graph. * * /sa /ref igraph_similarity_dice(), a measure very similar to the Jaccard *   coefficient *  * /example examples/simple/igraph_similarity.c */int igraph_similarity_jaccard(const igraph_t *graph, igraph_matrix_t *res,    const igraph_vs_t vids, igraph_neimode_t mode, igraph_bool_t loops) {  igraph_lazy_adjlist_t al;  igraph_vit_t vit, vit2;  long int i, j, k;  long int len_union, len_intersection;  igraph_vector_t *v1, *v2;  IGRAPH_CHECK(igraph_vit_create(graph, vids, &vit));  IGRAPH_FINALLY(igraph_vit_destroy, &vit);  IGRAPH_CHECK(igraph_vit_create(graph, vids, &vit2));  IGRAPH_FINALLY(igraph_vit_destroy, &vit2);  IGRAPH_CHECK(igraph_lazy_adjlist_init(graph, &al, mode, IGRAPH_SIMPLIFY));  IGRAPH_FINALLY(igraph_lazy_adjlist_destroy, &al);  IGRAPH_CHECK(igraph_matrix_resize(res, IGRAPH_VIT_SIZE(vit), IGRAPH_VIT_SIZE(vit)));  if (loops) {    for (IGRAPH_VIT_RESET(vit); !IGRAPH_VIT_END(vit); IGRAPH_VIT_NEXT(vit)) {      i=IGRAPH_VIT_GET(vit);      v1=igraph_lazy_adjlist_get(&al, (igraph_integer_t) i);      if (!igraph_vector_binsearch(v1, i, &k))        igraph_vector_insert(v1, k, i);    }  }  for (IGRAPH_VIT_RESET(vit), i=0;    !IGRAPH_VIT_END(vit); IGRAPH_VIT_NEXT(vit), i++) {    MATRIX(*res, i, i) = 1.0;    for (IGRAPH_VIT_RESET(vit2), j=0;      !IGRAPH_VIT_END(vit2); IGRAPH_VIT_NEXT(vit2), j++) {      if (j <= i)        continue;      v1=igraph_lazy_adjlist_get(&al, IGRAPH_VIT_GET(vit));      v2=igraph_lazy_adjlist_get(&al, IGRAPH_VIT_GET(vit2));      igraph_i_neisets_intersect(v1, v2, &len_union, &len_intersection);      if (len_union > 0)        MATRIX(*res, i, j) = ((igraph_real_t)len_intersection)/len_union;      else        MATRIX(*res, i, j) = 0.0;      MATRIX(*res, j, i) = MATRIX(*res, i, j);    }  }  igraph_lazy_adjlist_destroy(&al);  igraph_vit_destroy(&vit);  igraph_vit_destroy(&vit2);  IGRAPH_FINALLY_CLEAN(3);  return 0;//.........这里部分代码省略.........
开发者ID:AlessiaWent,项目名称:igraph,代码行数:101,


示例22: igraph_is_connected_weak

int igraph_is_connected_weak(const igraph_t *graph, igraph_bool_t *res) {  long int no_of_nodes=igraph_vcount(graph);  char *already_added;  igraph_vector_t neis=IGRAPH_VECTOR_NULL;  igraph_dqueue_t q=IGRAPH_DQUEUE_NULL;    long int i, j;  if (no_of_nodes == 0) {    *res = 1;    return IGRAPH_SUCCESS;  }  already_added=igraph_Calloc(no_of_nodes, char);  if (already_added==0) {    IGRAPH_ERROR("is connected (weak) failed", IGRAPH_ENOMEM);  }  IGRAPH_FINALLY(free, already_added); /* TODO: hack */  IGRAPH_DQUEUE_INIT_FINALLY(&q, 10);  IGRAPH_VECTOR_INIT_FINALLY(&neis, 0);    /* Try to find at least two clusters */  already_added[0]=1;  IGRAPH_CHECK(igraph_dqueue_push(&q, 0));    j=1;  while ( !igraph_dqueue_empty(&q)) {    long int actnode=(long int) igraph_dqueue_pop(&q);    IGRAPH_ALLOW_INTERRUPTION();    IGRAPH_CHECK(igraph_neighbors(graph, &neis, (igraph_integer_t) actnode,				  IGRAPH_ALL));    for (i=0; i <igraph_vector_size(&neis); i++) {      long int neighbor=(long int) VECTOR(neis)[i];      if (already_added[neighbor] != 0) { continue; }      IGRAPH_CHECK(igraph_dqueue_push(&q, neighbor));      j++;      already_added[neighbor]++;    }  }    /* Connected? */  *res = (j == no_of_nodes);  igraph_Free(already_added);  igraph_dqueue_destroy(&q);  igraph_vector_destroy(&neis);  IGRAPH_FINALLY_CLEAN(3);  return 0;}
开发者ID:aaronwolen,项目名称:rigraph,代码行数:52,


示例23: igraph_biguint_mul_limb

int igraph_biguint_mul_limb(igraph_biguint_t *res, igraph_biguint_t *b,			    limb_t l) {  long int nlimb=igraph_biguint_size(b);  limb_t carry;    if (res!= b) { IGRAPH_CHECK(igraph_biguint_resize(res, nlimb)); }    carry=bn_mul_limb( VECTOR(res->v), VECTOR(b->v), l, nlimb);  if (carry) {     IGRAPH_CHECK(igraph_biguint_extend(res, carry));  }  return 0;}
开发者ID:CansenJIANG,项目名称:igraph,代码行数:13,


示例24: igraph_i_maximal_cliques_store

int igraph_i_maximal_cliques_store(const igraph_vector_t* clique, void* data, igraph_bool_t* cont) {  igraph_vector_ptr_t* result = (igraph_vector_ptr_t*)data;  igraph_vector_t* vec;  vec = igraph_Calloc(1, igraph_vector_t);  if (vec == 0)    IGRAPH_ERROR("cannot allocate memory for storing next clique", IGRAPH_ENOMEM);  IGRAPH_CHECK(igraph_vector_copy(vec, clique));  IGRAPH_CHECK(igraph_vector_ptr_push_back(result, vec));  return IGRAPH_SUCCESS;}
开发者ID:CansenJIANG,项目名称:igraph,代码行数:13,


示例25: igraph_is_minimal_separator

int igraph_is_minimal_separator(const igraph_t *graph,				const igraph_vs_t candidate, 				igraph_bool_t *res) {  long int no_of_nodes=igraph_vcount(graph);  igraph_vector_bool_t removed;  igraph_dqueue_t Q;  igraph_vector_t neis;  long int candsize;  igraph_vit_t vit;    IGRAPH_CHECK(igraph_vit_create(graph, candidate, &vit));  IGRAPH_FINALLY(igraph_vit_destroy, &vit);  candsize=IGRAPH_VIT_SIZE(vit);  IGRAPH_CHECK(igraph_vector_bool_init(&removed, no_of_nodes));  IGRAPH_FINALLY(igraph_vector_bool_destroy, &removed);  IGRAPH_CHECK(igraph_dqueue_init(&Q, 100));  IGRAPH_FINALLY(igraph_dqueue_destroy, &Q);  IGRAPH_VECTOR_INIT_FINALLY(&neis, 0);  /* Is it a separator at all? */  IGRAPH_CHECK(igraph_i_is_separator(graph, &vit, -1, res, &removed, 				     &Q, &neis, no_of_nodes));  if (!(*res)) {    /* Not a separator at all, nothing to do, *res is already set */  } else if (candsize == 0) {    /* Nothing to do, minimal, *res is already set */  } else {    /* General case, we need to remove each vertex from 'candidate'     * and check whether the remainder is a separator. If this is     * false for all vertices, then 'candidate' is a minimal     * separator.     */    long int i;    for (i=0, *res=0; i<candsize && (!*res); i++) {      igraph_vector_bool_null(&removed);      IGRAPH_CHECK(igraph_i_is_separator(graph, &vit, i, res, &removed, 					 &Q, &neis, no_of_nodes));        }    (*res) = (*res) ? 0 : 1;	/* opposite */  }    igraph_vector_destroy(&neis);  igraph_dqueue_destroy(&Q);  igraph_vector_bool_destroy(&removed);  igraph_vit_destroy(&vit);  IGRAPH_FINALLY_CLEAN(4);  return 0;}
开发者ID:dacapo1142,项目名称:igraph,代码行数:51,


示例26: igraph_vector_complex_realimag

int igraph_vector_complex_realimag(const igraph_vector_complex_t *v, 				   igraph_vector_t *real, 				   igraph_vector_t *imag) {  int i, n=igraph_vector_complex_size(v);  IGRAPH_CHECK(igraph_vector_resize(real, n));  IGRAPH_CHECK(igraph_vector_resize(imag, n));  for (i=0; i<n; i++) {    igraph_complex_t z=VECTOR(*v)[i];    VECTOR(*real)[i] = IGRAPH_REAL(z);    VECTOR(*imag)[i] = IGRAPH_IMAG(z);  }  return 0;}
开发者ID:pombredanne,项目名称:RCA,代码行数:14,


示例27: igraph_create_bipartite

int igraph_create_bipartite(igraph_t *graph, const igraph_vector_bool_t *types,			    const igraph_vector_t *edges, 			    igraph_bool_t directed) {  igraph_integer_t no_of_nodes=    (igraph_integer_t) igraph_vector_bool_size(types);  long int no_of_edges=igraph_vector_size(edges);  igraph_real_t min_edge=0, max_edge=0;  igraph_bool_t min_type=0, max_type=0;  long int i;  if (no_of_edges % 2 != 0) {    IGRAPH_ERROR("Invalid (odd) edges vector", IGRAPH_EINVEVECTOR);  }  no_of_edges /= 2;    if (no_of_edges != 0) {    igraph_vector_minmax(edges, &min_edge, &max_edge);  }  if (min_edge < 0 || max_edge >= no_of_nodes) {    IGRAPH_ERROR("Invalid (negative) vertex id", IGRAPH_EINVVID);  }  /* Check types vector */  if (no_of_nodes != 0) {    igraph_vector_bool_minmax(types, &min_type, &max_type);    if (min_type < 0 || max_type > 1) {      IGRAPH_WARNING("Non-binary type vector when creating a bipartite graph");    }  }  /* Check bipartiteness */  for (i=0; i<no_of_edges*2; i+=2) {    long int from=(long int) VECTOR(*edges)[i];    long int to=(long int) VECTOR(*edges)[i+1];    long int t1=VECTOR(*types)[from];    long int t2=VECTOR(*types)[to];    if ( (t1 && t2) || (!t1 && !t2) ) {      IGRAPH_ERROR("Invalid edges, not a bipartite graph", IGRAPH_EINVAL);    }  }    IGRAPH_CHECK(igraph_empty(graph, no_of_nodes, directed));  IGRAPH_FINALLY(igraph_destroy, graph);  IGRAPH_CHECK(igraph_add_edges(graph, edges, 0));    IGRAPH_FINALLY_CLEAN(1);  return 0;}
开发者ID:FEYoung,项目名称:rigraph,代码行数:49,


示例28: igraph_dot_product_game

int igraph_dot_product_game(igraph_t *graph, const igraph_matrix_t *vecs,			    igraph_bool_t directed) {  igraph_integer_t nrow=igraph_matrix_nrow(vecs);  igraph_integer_t ncol=igraph_matrix_ncol(vecs);  int i, j;  igraph_vector_t edges;  igraph_bool_t warned_neg=0, warned_big=0;    IGRAPH_VECTOR_INIT_FINALLY(&edges, 0);      RNG_BEGIN();  for (i = 0; i < ncol; i++) {    int from=directed ? 0 : i+1;    igraph_vector_t v1;    igraph_vector_view(&v1, &MATRIX(*vecs, 0, i), nrow);    for (j = from; j < ncol; j++) {      igraph_real_t prob;      igraph_vector_t v2;      if (i==j) { continue; }      igraph_vector_view(&v2, &MATRIX(*vecs, 0, j), nrow);      igraph_lapack_ddot(&v1, &v2, &prob);      if (prob < 0 && ! warned_neg) {	warned_neg=1;	IGRAPH_WARNING("Negative connection probability in "		       "dot-product graph");      } else if (prob > 1 && ! warned_big) {	warned_big=1;	IGRAPH_WARNING("Greater than 1 connection probability in "		       "dot-product graph");	IGRAPH_CHECK(igraph_vector_push_back(&edges, i));	IGRAPH_CHECK(igraph_vector_push_back(&edges, j));      } else if (RNG_UNIF01() < prob) { 	IGRAPH_CHECK(igraph_vector_push_back(&edges, i));	IGRAPH_CHECK(igraph_vector_push_back(&edges, j));      }    }  }  RNG_END();    igraph_create(graph, &edges, ncol, directed);  igraph_vector_destroy(&edges);  IGRAPH_FINALLY_CLEAN(1);  return 0;}
开发者ID:abeham,项目名称:igraph,代码行数:48,


示例29: Java_net_sf_igraph_VertexSet_to_igraph_vs

/* * Converts a Java VertexSet to an igraph_vs_t * @return:  zero if everything went fine, 1 if a null pointer was passed */int Java_net_sf_igraph_VertexSet_to_igraph_vs(JNIEnv *env, jobject jobj, igraph_vs_t *result) {  jint typeHint;  jobject idArray;  if (jobj == 0) {    IGRAPH_CHECK(igraph_vs_all(result));	return IGRAPH_SUCCESS;  }  typeHint = (*env)->CallIntMethod(env, jobj, net_sf_igraph_VertexSet_getTypeHint_mid);  if (typeHint != 1 && typeHint != 2) {    IGRAPH_CHECK(igraph_vs_all(result));    return IGRAPH_SUCCESS;  }    idArray = (*env)->CallObjectMethod(env, jobj, net_sf_igraph_VertexSet_getIdArray_mid);  if ((*env)->ExceptionCheck(env)) {	return IGRAPH_EINVAL;  }  if (typeHint == 1) {    /* Single vertex */	jlong id[1];	(*env)->GetLongArrayRegion(env, idArray, 0, 1, id);	IGRAPH_CHECK(igraph_vs_1(result, (igraph_integer_t)id[0]));  } else if (typeHint == 2) {    /* List of vertices */	jlong* ids;	igraph_vector_t vec;	long i, n;	ids = (*env)->GetLongArrayElements(env, idArray, 0);	n = (*env)->GetArrayLength(env, idArray);	IGRAPH_VECTOR_INIT_FINALLY(&vec, n);	for (i = 0; i < n; i++)		VECTOR(vec)[i] = ids[i];	IGRAPH_CHECK(igraph_vs_vector_copy(result, &vec));	igraph_vector_destroy(&vec);	IGRAPH_FINALLY_CLEAN(1);	(*env)->ReleaseLongArrayElements(env, idArray, ids, JNI_ABORT);  }  (*env)->DeleteLocalRef(env, idArray);  return IGRAPH_SUCCESS;}
开发者ID:AlessiaWent,项目名称:igraph,代码行数:52,


示例30: igraph_i_local_scan_1_directed

int igraph_i_local_scan_1_directed(const igraph_t *graph,				   igraph_vector_t *res,				   const igraph_vector_t *weights,				   igraph_neimode_t mode) {  int no_of_nodes=igraph_vcount(graph);  igraph_inclist_t incs;  int i, node;  igraph_vector_int_t neis;  IGRAPH_CHECK(igraph_inclist_init(graph, &incs, mode));  IGRAPH_FINALLY(igraph_inclist_destroy, &incs);  igraph_vector_int_init(&neis, no_of_nodes);  IGRAPH_FINALLY(igraph_vector_int_destroy, &neis);  igraph_vector_resize(res, no_of_nodes);  igraph_vector_null(res);  for (node=0; node < no_of_nodes; node++) {    igraph_vector_int_t *edges1=igraph_inclist_get(&incs, node);    int edgeslen1=igraph_vector_int_size(edges1);    IGRAPH_ALLOW_INTERRUPTION();    /* Mark neighbors and self*/    VECTOR(neis)[node] = node+1;    for (i=0; i<edgeslen1; i++) {      int e=VECTOR(*edges1)[i];      int nei=IGRAPH_OTHER(graph, e, node);      igraph_real_t w= weights ? VECTOR(*weights)[e] : 1;      VECTOR(neis)[nei] = node+1;      VECTOR(*res)[node] += w;    }    /* Crawl neighbors */    for (i=0; i<edgeslen1; i++) {      int e2=VECTOR(*edges1)[i];      int nei=IGRAPH_OTHER(graph, e2, node);      igraph_vector_int_t *edges2=igraph_inclist_get(&incs, nei);      int j, edgeslen2=igraph_vector_int_size(edges2);      for (j=0; j<edgeslen2; j++) {	int e2=VECTOR(*edges2)[j];	int nei2=IGRAPH_OTHER(graph, e2, nei);	igraph_real_t w2= weights ? VECTOR(*weights)[e2] : 1;	if (VECTOR(neis)[nei2] == node+1) {	  VECTOR(*res)[node] += w2;	}      }    }  } /* node < no_of_nodes */  igraph_vector_int_destroy(&neis);  igraph_inclist_destroy(&incs);  IGRAPH_FINALLY_CLEAN(2);  return 0;}
开发者ID:abeham,项目名称:igraph,代码行数:60,



注:本文中的IGRAPH_CHECK函数示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


C++ IGRAPH_ERROR函数代码示例
C++ IGNORE函数代码示例
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。