您当前的位置:首页 > IT编程 > Keras
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:深度学习keras自定义损失函数并且模型加载的写法

51自学网 2020-09-27 22:21:50
  Keras
这篇教程深度学习keras自定义损失函数并且模型加载的写法写得很实用,希望能帮到您。

keras自定义损失函数并且模型加载的写法介绍

 python教程  

keras自定义函数时候,正常在模型里自己写好自定义的函数,然后在模型编译的那行代码里写上接口即可。如下所示,focal_loss和fbeta_score是我们自己定义的两个函数,在model.compile加入它们,metrics里‘accuracy'是keras自带的度量函数。

def focal_loss():
 ...
 return xx
def fbeta_score():
 ...
 return yy
model.compile(optimizer=Adam(lr=0.0001), loss=[focal_loss],metrics=['accuracy',fbeta_score] )

训练好之后,模型加载也需要再额外加一行,通过load_model里的custom_objects将我们定义的两个函数以字典的形式加入就能正常加载模型啦。

weight_path = './weights.h5'
model = load_model(weight_path,custom_objects={'focal_loss': focal_loss,'fbeta_score':fbeta_score})

补充知识:keras如何使用自定义的loss及评价函数进行训练及预测

1.有时候训练模型,现有的损失及评估函数并不足以科学的训练评估模型,这时候就需要自定义一些损失评估函数,比如focal loss损失函数及dice评价函数 for unet的训练。

2.在训练建模中导入自定义loss及评估函数。

#模型编译时加入自定义loss及评估函数
model.compile(optimizer = Adam(lr=1e-4), loss=[binary_focal_loss()],
    metrics=['accuracy',dice_coef])

#自定义loss及评估函数
def binary_focal_loss(gamma=2, alpha=0.25):
 """
 Binary form of focal loss.
 适用于二分类问题的focal loss
 focal_loss(p_t) = -alpha_t * (1 - p_t)**gamma * log(p_t)
  where p = sigmoid(x), p_t = p or 1 - p depending on if the label is 1 or 0, respectively.
 References:
  https://arxiv.org/pdf/1708.02002.pdf
 Usage:
  model.compile(loss=[binary_focal_loss(alpha=.25, gamma=2)], metrics=["accuracy"], optimizer=adam)
 """
 alpha = tf.constant(alpha, dtype=tf.float32)
 gamma = tf.constant(gamma, dtype=tf.float32)

 def binary_focal_loss_fixed(y_true, y_pred):
  """
  y_true shape need be (None,1)
  y_pred need be compute after sigmoid
  """
  y_true = tf.cast(y_true, tf.float32)
  alpha_t = y_true * alpha + (K.ones_like(y_true) - y_true) * (1 - alpha)

  p_t = y_true * y_pred + (K.ones_like(y_true) - y_true) * (K.ones_like(y_true) - y_pred) + K.epsilon()
  focal_loss = - alpha_t * K.pow((K.ones_like(y_true) - p_t), gamma) * K.log(p_t)
  return K.mean(focal_loss)

 return binary_focal_loss_fixed

#'''
#smooth 参数防止分母为0
def dice_coef(y_true, y_pred, smooth=1):
 intersection = K.sum(y_true * y_pred, axis=[1,2,3])
 union = K.sum(y_true, axis=[1,2,3]) + K.sum(y_pred, axis=[1,2,3])
 return K.mean( (2. * intersection + smooth) / (union + smooth), axis=0)

注意在模型保存时,记录的loss函数名称:你猜是哪个

a:binary_focal_loss()

b:binary_focal_loss_fixed

3.模型预测时,也要加载自定义loss及评估函数,不然会报错。

该告诉上面的答案了,保存在模型中loss的名称为:binary_focal_loss_fixed,在模型预测时,定义custom_objects字典,key一定要与保存在模型中的名称一致,不然会找不到loss function。所以自定义函数时,尽量避免使用我这种函数嵌套的方式,免得带来一些意想不到的烦恼。

model = load_model('./unet_' + label + '_20.h5',custom_objects={'binary_focal_loss_fixed': binary_focal_loss(),'dice_coef': dice_coef})

以上这篇keras自定义损失函数并且模型加载的写法介绍还不错吧。


深度学习使用Keras加载含有自定义层或函数的模型操作
keras获得model中某一层的某一个Tensor的输出维度
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。