您当前的位置:首页 > IT编程 > Keras
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Lambda layer 的应用

51自学网 2020-12-01 09:44:10
  Keras
这篇教程Lambda layer 的应用写得很实用,希望能帮到您。

Lambda layer

Lambda class

tf.keras.layers.Lambda(
    function, output_shape=None, mask=None, arguments=None, **kwargs
)

Wraps arbitrary expressions as a Layer object.

The Lambda layer exists so that arbitrary TensorFlow functions can be used when constructing Sequential and Functional API models. Lambda layers are best suited for simple operations or quick experimentation. For more advanced use cases, follow this guide for subclassing tf.keras.layers.Layer.

The main reason to subclass tf.keras.layers.Layer instead of using a Lambda layer is saving and inspecting a Model. Lambda layers are saved by serializing the Python bytecode, whereas subclassed Layers can be saved via overriding their get_config method. Overriding get_config improves the portability of Models. Models that rely on subclassed Layers are also often easier to visualize and reason about.

Examples

# add a x -> x^2 layer
model.add(Lambda(lambda x: x ** 2))
# add a layer that returns the concatenation
# of the positive part of the input and
# the opposite of the negative part

def antirectifier(x):
    x -= K.mean(x, axis=1, keepdims=True)
    x = K.l2_normalize(x, axis=1)
    pos = K.relu(x)
    neg = K.relu(-x)
    return K.concatenate([pos, neg], axis=1)

model.add(Lambda(antirectifier))

Variables: While it is possible to use Variables with Lambda layers, this practice is discouraged as it can easily lead to bugs. For instance, consider the following layer:

python scale = tf.Variable(1.) scale_layer = tf.keras.layers.Lambda(lambda x: x * scale)

Because scale_layer does not directly track the scale variable, it will not appear in scale_layer.trainable_weights and will therefore not be trained if scale_layer is used in a Model.

A better pattern is to write a subclassed Layer:

```python class ScaleLayer(tf.keras.layers.Layer): def init(self): super(ScaleLayer, self).init() self.scale = tf.Variable(1.)

  def call(self, inputs):
    return inputs * self.scale

```

In general, Lambda layers can be convenient for simple stateless computation, but anything more complex should use a subclass Layer instead.

Arguments

  • function: The function to be evaluated. Takes input tensor as first argument.
  • output_shape: Expected output shape from function. This argument can be inferred if not explicitly provided. Can be a tuple or function. If a tuple, it only specifies the first dimension onward; sample dimension is assumed either the same as the input: output_shape = (input_shape[0], ) + output_shape or, the input is None and the sample dimension is also None: output_shape = (None, ) + output_shape If a function, it specifies the entire shape as a function of the input shape: output_shape = f(input_shape)
  • mask: Either None (indicating no masking) or a callable with the same signature as the compute_mask layer method, or a tensor that will be returned as output mask regardless of what the input is.
  • arguments: Optional dictionary of keyword arguments to be passed to the function.

Input shape

Arbitrary. Use the keyword argument input_shape (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model.

Output shape

Specified by output_shape argument


Python layers.Permute方法代码示例
keras 张量点积计算
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。