这篇教程Python layers.Activation方法代码示例写得很实用,希望能帮到您。
本文整理汇总了Python中keras.layers.Activation方法的典型用法代码示例。如果您正苦于以下问题:Python layers.Activation方法的具体用法?Python layers.Activation怎么用?Python layers.Activation使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.layers 的用法示例。 在下文中一共展示了layers.Activation方法的30个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。 示例1: _get_logits_name# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Activation [as 别名]def _get_logits_name(self): """ Looks for the name of the layer producing the logits. :return: name of layer producing the logits """ softmax_name = self._get_softmax_name() softmax_layer = self.model.get_layer(softmax_name) if not isinstance(softmax_layer, Activation): # In this case, the activation is part of another layer return softmax_name if hasattr(softmax_layer, 'inbound_nodes'): warnings.warn( "Please update your version to keras >= 2.1.3; " "support for earlier keras versions will be dropped on " "2018-07-22") node = softmax_layer.inbound_nodes[0] else: node = softmax_layer._inbound_nodes[0] logits_name = node.inbound_layers[0].name return logits_name
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:26,代码来源:utils_keras.py
示例2: CausalCNN# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Activation [as 别名]def CausalCNN(n_filters, lr, decay, loss, seq_len, input_features, strides_len, kernel_size, dilation_rates): inputs = Input(shape=(seq_len, input_features), name='input_layer') x=inputs for dilation_rate in dilation_rates: x = Conv1D(filters=n_filters, kernel_size=kernel_size, padding='causal', dilation_rate=dilation_rate, activation='linear')(x) x = BatchNormalization()(x) x = Activation('relu')(x) #x = Dense(7, activation='relu', name='dense_layer')(x) outputs = Dense(3, activation='sigmoid', name='output_layer')(x) causalcnn = Model(inputs, outputs=[outputs]) return causalcnn
开发者ID:BruceBinBoxing,项目名称:Deep_Learning_Weather_Forecasting,代码行数:23,代码来源:weather_model.py
示例3: build_generator# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Activation [as 别名]def build_generator(self): model = Sequential() model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim)) model.add(Reshape((7, 7, 128))) model.add(BatchNormalization(momentum=0.8)) model.add(UpSampling2D()) model.add(Conv2D(128, kernel_size=3, padding="same")) model.add(Activation("relu")) model.add(BatchNormalization(momentum=0.8)) model.add(UpSampling2D()) model.add(Conv2D(64, kernel_size=3, padding="same")) model.add(Activation("relu")) model.add(BatchNormalization(momentum=0.8)) model.add(Conv2D(1, kernel_size=3, padding="same")) model.add(Activation("tanh")) model.summary() noise = Input(shape=(self.latent_dim,)) img = model(noise) return Model(noise, img)
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:26,代码来源:sgan.py
示例4: build_generator# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Activation [as 别名]def build_generator(self): model = Sequential() model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim)) model.add(Reshape((7, 7, 128))) model.add(BatchNormalization(momentum=0.8)) model.add(UpSampling2D()) model.add(Conv2D(128, kernel_size=3, padding="same")) model.add(Activation("relu")) model.add(BatchNormalization(momentum=0.8)) model.add(UpSampling2D()) model.add(Conv2D(64, kernel_size=3, padding="same")) model.add(Activation("relu")) model.add(BatchNormalization(momentum=0.8)) model.add(Conv2D(self.channels, kernel_size=3, padding='same')) model.add(Activation("tanh")) gen_input = Input(shape=(self.latent_dim,)) img = model(gen_input) model.summary() return Model(gen_input, img)
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:26,代码来源:infogan.py
示例5: build_generator# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Activation [as 别名]def build_generator(self): model = Sequential() model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim)) model.add(Reshape((7, 7, 128))) model.add(UpSampling2D()) model.add(Conv2D(128, kernel_size=4, padding="same")) model.add(BatchNormalization(momentum=0.8)) model.add(Activation("relu")) model.add(UpSampling2D()) model.add(Conv2D(64, kernel_size=4, padding="same")) model.add(BatchNormalization(momentum=0.8)) model.add(Activation("relu")) model.add(Conv2D(self.channels, kernel_size=4, padding="same")) model.add(Activation("tanh")) model.summary() noise = Input(shape=(self.latent_dim,)) img = model(noise) return Model(noise, img)
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:25,代码来源:wgan_gp.py
示例6: build_generator# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Activation [as 别名]def build_generator(self): model = Sequential() model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim)) model.add(Reshape((7, 7, 128))) model.add(UpSampling2D()) model.add(Conv2D(128, kernel_size=3, padding="same")) model.add(BatchNormalization(momentum=0.8)) model.add(Activation("relu")) model.add(UpSampling2D()) model.add(Conv2D(64, kernel_size=3, padding="same")) model.add(BatchNormalization(momentum=0.8)) model.add(Activation("relu")) model.add(Conv2D(self.channels, kernel_size=3, padding="same")) model.add(Activation("tanh")) model.summary() noise = Input(shape=(self.latent_dim,)) img = model(noise) return Model(noise, img)
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:25,代码来源:dcgan.py
示例7: get_model_41# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Activation [as 别名]def get_model_41(params): embedding_weights = pickle.load(open("../data/datasets/train_data/embedding_weights_w2v-google_MSD-AG.pk","rb")) # main sequential model model = Sequential() model.add(Embedding(len(embedding_weights[0]), params['embedding_dim'], input_length=params['sequence_length'], weights=embedding_weights)) #model.add(Dropout(params['dropout_prob'][0], input_shape=(params['sequence_length'], params['embedding_dim']))) model.add(LSTM(2048)) #model.add(Dropout(params['dropout_prob'][1])) model.add(Dense(output_dim=params["n_out"], init="uniform")) model.add(Activation(params['final_activation'])) logging.debug("Output CNN: %s" % str(model.output_shape)) if params['final_activation'] == 'linear': model.add(Lambda(lambda x :K.l2_normalize(x, axis=1))) return model# CRNN Arch for audio
开发者ID:sergiooramas,项目名称:tartarus,代码行数:22,代码来源:models.py
示例8: g_block# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Activation [as 别名]def g_block(inp, fil, u = True): if u: out = UpSampling2D(interpolation = 'bilinear')(inp) else: out = Activation('linear')(inp) skip = Conv2D(fil, 1, padding = 'same', kernel_initializer = 'he_normal')(out) out = Conv2D(filters = fil, kernel_size = 3, padding = 'same', kernel_initializer = 'he_normal')(out) out = LeakyReLU(0.2)(out) out = Conv2D(filters = fil, kernel_size = 3, padding = 'same', kernel_initializer = 'he_normal')(out) out = LeakyReLU(0.2)(out) out = Conv2D(fil, 1, padding = 'same', kernel_initializer = 'he_normal')(out) out = add([out, skip]) out = LeakyReLU(0.2)(out) return out
开发者ID:manicman1999,项目名称:Keras-BiGAN,代码行数:23,代码来源:bigan.py
示例9: nonlinearity# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Activation [as 别名]def nonlinearity(h_nonlin_name): def compile_fn(di, dh): def fn(di): nonlin_name = dh['nonlin_name'] if nonlin_name == 'relu': Out = Activation('relu')(di['in']) elif nonlin_name == 'tanh': Out = Activation('tanh')(di['in']) elif nonlin_name == 'elu': Out = Activation('elu')(di['in']) else: raise ValueError return {"out": Out} return fn return hke.siso_keras_module('Nonlinearity', compile_fn, {'nonlin_name': h_nonlin_name})
示例10: evaluate# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Activation [as 别名]def evaluate(self, inputs, outputs): keras.backend.clear_session() X = Input(self.X_train[0].shape) co.forward({inputs['in']: X}) logits = outputs['out'].val probs = Activation('softmax')(logits) model = Model(inputs=[inputs['in'].val], outputs=[probs]) model.compile(optimizer=Adam(lr=self.learning_rate), loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.summary() history = model.fit(self.X_train, self.y_train, batch_size=self.batch_size, epochs=self.num_training_epochs, validation_data=(self.X_val, self.y_val)) results = {'validation_accuracy': history.history['val_accuracy'][-1]} return results
示例11: modelA# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Activation [as 别名]def modelA(): model = Sequential() model.add(Conv2D(64, (5, 5), padding='valid')) model.add(Activation('relu')) model.add(Conv2D(64, (5, 5))) model.add(Activation('relu')) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(FLAGS.NUM_CLASSES)) return model
开发者ID:sunblaze-ucb,项目名称:blackbox-attacks,代码行数:20,代码来源:mnist.py
示例12: modelB# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Activation [as 别名]def modelB(): model = Sequential() model.add(Dropout(0.2, input_shape=(FLAGS.IMAGE_ROWS, FLAGS.IMAGE_COLS, FLAGS.NUM_CHANNELS))) model.add(Convolution2D(64, 8, 8, subsample=(2, 2), border_mode='same')) model.add(Activation('relu')) model.add(Convolution2D(128, 6, 6, subsample=(2, 2), border_mode='valid')) model.add(Activation('relu')) model.add(Convolution2D(128, 5, 5, subsample=(1, 1))) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Flatten()) model.add(Dense(FLAGS.NUM_CLASSES)) return model
开发者ID:sunblaze-ucb,项目名称:blackbox-attacks,代码行数:26,代码来源:mnist.py
示例13: modelC# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Activation [as 别名]def modelC(): model = Sequential() model.add(Convolution2D(128, 3, 3, border_mode='valid', input_shape=(FLAGS.IMAGE_ROWS, FLAGS.IMAGE_COLS, FLAGS.NUM_CHANNELS))) model.add(Activation('relu')) model.add(Convolution2D(64, 3, 3)) model.add(Activation('relu')) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(FLAGS.NUM_CLASSES)) return model
开发者ID:sunblaze-ucb,项目名称:blackbox-attacks,代码行数:23,代码来源:mnist.py
示例14: modelF# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Activation [as 别名]def modelF(): model = Sequential() model.add(Convolution2D(32, 3, 3, border_mode='valid', input_shape=(FLAGS.IMAGE_ROWS, FLAGS.IMAGE_COLS, FLAGS.NUM_CHANNELS))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Convolution2D(64, 3, 3)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(1024)) model.add(Activation('relu')) model.add(Dense(FLAGS.NUM_CLASSES)) return model
开发者ID:sunblaze-ucb,项目名称:blackbox-attacks,代码行数:26,代码来源:mnist.py
示例15: test_keras_transformer_single_dim# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Activation [as 别名]def test_keras_transformer_single_dim(self): """ Test that KerasTransformer correctly handles single-dimensional input data. """ # Construct a model for simple binary classification (with a single hidden layer) model = Sequential() input_shape = [10] model.add(Dense(units=10, input_shape=input_shape, bias_initializer=self._getKerasModelWeightInitializer(), kernel_initializer=self._getKerasModelWeightInitializer())) model.add(Activation('relu')) model.add(Dense(units=1, bias_initializer=self._getKerasModelWeightInitializer(), kernel_initializer=self._getKerasModelWeightInitializer())) model.add(Activation('sigmoid')) # Compare KerasTransformer output to raw Keras model output self._test_keras_transformer_helper(model, model_filename="keras_transformer_single_dim")
示例16: ann_model# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Activation [as 别名]def ann_model(input_shape): inp = Input(shape=input_shape, name='mfcc_in') model = inp model = Conv1D(filters=12, kernel_size=(3), activation='relu')(model) model = Conv1D(filters=12, kernel_size=(3), activation='relu')(model) model = Flatten()(model) model = Dense(56)(model) model = Activation('relu')(model) model = BatchNormalization()(model) model = Dropout(0.2)(model) model = Dense(28)(model) model = Activation('relu')(model) model = BatchNormalization()(model) model = Dense(1)(model) model = Activation('sigmoid')(model) model = Model(inp, model) return model
示例17: _initial_conv_block_inception# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Activation [as 别名]def _initial_conv_block_inception(input, initial_conv_filters, weight_decay=5e-4): ''' Adds an initial conv block, with batch norm and relu for the DPN Args: input: input tensor initial_conv_filters: number of filters for initial conv block weight_decay: weight decay factor Returns: a keras tensor ''' channel_axis = 1 if K.image_data_format() == 'channels_first' else -1 x = Conv2D(initial_conv_filters, (7, 7), padding='same', use_bias=False, kernel_initializer='he_normal', kernel_regularizer=l2(weight_decay), strides=(2, 2))(input) x = BatchNormalization(axis=channel_axis)(x) x = Activation('relu')(x) x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x) return x
示例18: _bn_relu_conv_block# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Activation [as 别名]def _bn_relu_conv_block(input, filters, kernel=(3, 3), stride=(1, 1), weight_decay=5e-4): ''' Adds a Batchnorm-Relu-Conv block for DPN Args: input: input tensor filters: number of output filters kernel: convolution kernel size stride: stride of convolution Returns: a keras tensor ''' channel_axis = 1 if K.image_data_format() == 'channels_first' else -1 x = Conv2D(filters, kernel, padding='same', use_bias=False, kernel_initializer='he_normal', kernel_regularizer=l2(weight_decay), strides=stride)(input) x = BatchNormalization(axis=channel_axis)(x) x = Activation('relu')(x) return x
示例19: weather_conv1D# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Activation [as 别名]def weather_conv1D(layers, lr, decay, loss, input_len, input_features, strides_len, kernel_size): inputs = Input(shape=(input_len, input_features), name='input_layer') for i, hidden_nums in enumerate(layers): if i==0: #inputs = BatchNormalization(name='BN_input')(inputs) hn = Conv1D(hidden_nums, kernel_size=kernel_size, strides=strides_len, data_format='channels_last', padding='same', activation='linear')(inputs) hn = BatchNormalization(name='BN_{}'.format(i))(hn) hn = Activation('relu')(hn) elif i<len(layers)-1: hn = Conv1D(hidden_nums, kernel_size=kernel_size, strides=strides_len, data_format='channels_last', padding='same',activation='linear')(hn) hn = BatchNormalization(name='BN_{}'.format(i))(hn) hn = Activation('relu')(hn) else: hn = Conv1D(hidden_nums, kernel_size=kernel_size, strides=strides_len, data_format='channels_last', padding='same',activation='linear')(hn) hn = BatchNormalization(name='BN_{}'.format(i))(hn) outputs = Dense(80, activation='relu', name='dense_layer')(hn) outputs = Dense(3, activation='tanh', name='output_layer')(outputs) weather_model = Model(inputs, outputs=[outputs]) return weather_model
开发者ID:BruceBinBoxing,项目名称:Deep_Learning_Weather_Forecasting,代码行数:33,代码来源:weather_model.py
示例20: weather_fnn# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Activation [as 别名]def weather_fnn(layers, lr, decay, loss, seq_len, input_features, output_features): ori_inputs = Input(shape=(seq_len, input_features), name='input_layer') #print(seq_len*input_features) conv_ = Conv1D(11, kernel_size=13, strides=1, data_format='channels_last', padding='valid', activation='linear')(ori_inputs) conv_ = BatchNormalization(name='BN_conv')(conv_) conv_ = Activation('relu')(conv_) conv_ = Conv1D(5, kernel_size=7, strides=1, data_format='channels_last', padding='valid', activation='linear')(conv_) conv_ = BatchNormalization(name='BN_conv2')(conv_) conv_ = Activation('relu')(conv_) inputs = Reshape((-1,))(conv_) for i, hidden_nums in enumerate(layers): if i==0: hn = Dense(hidden_nums, activation='linear')(inputs) hn = BatchNormalization(name='BN_{}'.format(i))(hn) hn = Activation('relu')(hn) else: hn = Dense(hidden_nums, activation='linear')(hn) hn = BatchNormalization(name='BN_{}'.format(i))(hn) hn = Activation('relu')(hn) #hn = Dropout(0.1)(hn) #print(seq_len, output_features) #print(hn) outputs = Dense(seq_len*output_features, activation='sigmoid', name='output_layer')(hn) # 37*3 outputs = Reshape((seq_len, output_features))(outputs) weather_fnn = Model(ori_inputs, outputs=[outputs]) return weather_fnn
开发者ID:BruceBinBoxing,项目名称:Deep_Learning_Weather_Forecasting,代码行数:39,代码来源:weather_model.py
示例21: ss_bt# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Activation [as 别名]def ss_bt(self, x, dilation, strides=(1, 1), padding='same'): x1, x2 = self.channel_split(x) filters = (int(x.shape[-1]) // self.groups) x1 = layers.Conv2D(filters, kernel_size=(3, 1), strides=strides, padding=padding)(x1) x1 = layers.Activation('relu')(x1) x1 = layers.Conv2D(filters, kernel_size=(1, 3), strides=strides, padding=padding)(x1) x1 = layers.BatchNormalization()(x1) x1 = layers.Activation('relu')(x1) x1 = layers.Conv2D(filters, kernel_size=(3, 1), strides=strides, padding=padding, dilation_rate=(dilation, 1))( x1) x1 = layers.Activation('relu')(x1) x1 = layers.Conv2D(filters, kernel_size=(1, 3), strides=strides, padding=padding, dilation_rate=(1, dilation))( x1) x1 = layers.BatchNormalization()(x1) x1 = layers.Activation('relu')(x1) x2 = layers.Conv2D(filters, kernel_size=(1, 3), strides=strides, padding=padding)(x2) x2 = layers.Activation('relu')(x2) x2 = layers.Conv2D(filters, kernel_size=(3, 1), strides=strides, padding=padding)(x2) x2 = layers.BatchNormalization()(x2) x2 = layers.Activation('relu')(x2) x2 = layers.Conv2D(filters, kernel_size=(1, 3), strides=strides, padding=padding, dilation_rate=(1, dilation))( x2) x2 = layers.Activation('relu')(x2) x2 = layers.Conv2D(filters, kernel_size=(3, 1), strides=strides, padding=padding, dilation_rate=(dilation, 1))( x2) x2 = layers.BatchNormalization()(x2) x2 = layers.Activation('relu')(x2) x_concat = layers.concatenate([x1, x2], axis=-1) x_add = layers.add([x, x_concat]) output = self.channel_shuffle(x_add) return output
开发者ID:JACKYLUO1991,项目名称:Face-skin-hair-segmentaiton-and-skin-color-evaluation,代码行数:34,代码来源:lednet.py
示例22: down_sample# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Activation [as 别名]def down_sample(self, x, filters): x_filters = int(x.shape[-1]) x_conv = layers.Conv2D(filters - x_filters, kernel_size=3, strides=(2, 2), padding='same')(x) x_pool = layers.MaxPool2D()(x) x = layers.concatenate([x_conv, x_pool], axis=-1) x = layers.BatchNormalization()(x) x = layers.Activation('relu')(x) return x
开发者ID:JACKYLUO1991,项目名称:Face-skin-hair-segmentaiton-and-skin-color-evaluation,代码行数:10,代码来源:lednet.py
示例23: apn_module# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Activation [as 别名]def apn_module(self, x): def right(x): x = layers.AveragePooling2D()(x) x = layers.Conv2D(self.classes, kernel_size=1, padding='same')(x) x = layers.BatchNormalization()(x) x = layers.Activation('relu')(x) x = layers.UpSampling2D(interpolation='bilinear')(x) return x def conv(x, filters, kernel_size, stride): x = layers.Conv2D(filters, kernel_size=kernel_size, strides=(stride, stride), padding='same')(x) x = layers.BatchNormalization()(x) x = layers.Activation('relu')(x) return x x_7 = conv(x, int(x.shape[-1]), 7, stride=2) x_5 = conv(x_7, int(x.shape[-1]), 5, stride=2) x_3 = conv(x_5, int(x.shape[-1]), 3, stride=2) x_3_1 = conv(x_3, self.classes, 3, stride=1) x_3_1_up = layers.UpSampling2D(interpolation='bilinear')(x_3_1) x_5_1 = conv(x_5, self.classes, 5, stride=1) x_3_5 = layers.add([x_5_1, x_3_1_up]) x_3_5_up = layers.UpSampling2D(interpolation='bilinear')(x_3_5) x_7_1 = conv(x_7, self.classes, 3, stride=1) x_3_5_7 = layers.add([x_7_1, x_3_5_up]) x_3_5_7_up = layers.UpSampling2D(interpolation='bilinear')(x_3_5_7) x_middle = conv(x, self.classes, 1, stride=1) x_middle = layers.multiply([x_3_5_7_up, x_middle]) x_right = right(x) x_middle = layers.add([x_middle, x_right]) return x_middle
开发者ID:JACKYLUO1991,项目名称:Face-skin-hair-segmentaiton-and-skin-color-evaluation,代码行数:37,代码来源:lednet.py
示例24: decoder# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Activation [as 别名]def decoder(self, x): x = self.apn_module(x) x = layers.UpSampling2D(size=8, interpolation='bilinear')(x) x = layers.Conv2D(self.classes, kernel_size=3, padding='same')(x) x = layers.BatchNormalization()(x) x = layers.Activation('softmax')(x) return x
开发者ID:JACKYLUO1991,项目名称:Face-skin-hair-segmentaiton-and-skin-color-evaluation,代码行数:9,代码来源:lednet.py
示例25: conv2d_bn# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Activation [as 别名]def conv2d_bn(x, filters, kernel_size, strides=1, padding='same', activation='relu', use_bias=False, name=None): """Utility function to apply conv + BN. # Arguments x: input tensor. filters: filters in `Conv2D`. kernel_size: kernel size as in `Conv2D`. padding: padding mode in `Conv2D`. activation: activation in `Conv2D`. strides: strides in `Conv2D`. name: name of the ops; will become `name + '_ac'` for the activation and `name + '_bn'` for the batch norm layer. # Returns Output tensor after applying `Conv2D` and `BatchNormalization`. """ x = Conv2D(filters, kernel_size, strides=strides, padding=padding, use_bias=use_bias, name=name)(x) if not use_bias: bn_axis = 1 if K.image_data_format() == 'channels_first' else 3 bn_name = None if name is None else name + '_bn' x = BatchNormalization(axis=bn_axis, scale=False, name=bn_name)(x) if activation is not None: ac_name = None if name is None else name + '_ac' x = Activation(activation, name=ac_name)(x) return x
示例26: identity_block# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Activation [as 别名]def identity_block(input_tensor, kernel_size, filters, stage, block): """The identity block is the block that has no conv layer at shortcut. # Arguments input_tensor: input tensor kernel_size: default 3, the kernel size of middle conv layer at main path filters: list of integers, the filters of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'keras.., current block label, used for generating layer names # Returns Output tensor for the block. """ filters1, filters2, filters3 = filters if K.image_data_format() == 'channels_last': bn_axis = 3 else: bn_axis = 1 conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' x = Conv2D(filters1, (1, 1), name=conv_name_base + '2a')(input_tensor) x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x) x = Activation('relu')(x) x = Conv2D(filters2, kernel_size, padding='same', name=conv_name_base + '2b')(x) x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x) x = Activation('relu')(x) x = Conv2D(filters3, (1, 1), name=conv_name_base + '2c')(x) x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x) x = layers.add([x, input_tensor]) x = Activation('relu')(x) return x
示例27: build_generator# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Activation [as 别名]def build_generator(self): model = Sequential() # Encoder model.add(Conv2D(32, kernel_size=3, strides=2, input_shape=self.img_shape, padding="same")) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Conv2D(64, kernel_size=3, strides=2, padding="same")) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Conv2D(128, kernel_size=3, strides=2, padding="same")) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Conv2D(512, kernel_size=1, strides=2, padding="same")) model.add(LeakyReLU(alpha=0.2)) model.add(Dropout(0.5)) # Decoder model.add(UpSampling2D()) model.add(Conv2D(128, kernel_size=3, padding="same")) model.add(Activation('relu')) model.add(BatchNormalization(momentum=0.8)) model.add(UpSampling2D()) model.add(Conv2D(64, kernel_size=3, padding="same")) model.add(Activation('relu')) model.add(BatchNormalization(momentum=0.8)) model.add(Conv2D(self.channels, kernel_size=3, padding="same")) model.add(Activation('tanh')) model.summary() masked_img = Input(shape=self.img_shape) gen_missing = model(masked_img) return Model(masked_img, gen_missing)
示例28: build_generator# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Activation [as 别名]def build_generator(self): """Resnet Generator""" def residual_block(layer_input): """Residual block described in paper""" d = Conv2D(64, kernel_size=3, strides=1, padding='same')(layer_input) d = BatchNormalization(momentum=0.8)(d) d = Activation('relu')(d) d = Conv2D(64, kernel_size=3, strides=1, padding='same')(d) d = BatchNormalization(momentum=0.8)(d) d = Add()([d, layer_input]) return d # Image input img = Input(shape=self.img_shape) l1 = Conv2D(64, kernel_size=3, padding='same', activation='relu')(img) # Propogate signal through residual blocks r = residual_block(l1) for _ in range(self.residual_blocks - 1): r = residual_block(r) output_img = Conv2D(self.channels, kernel_size=3, padding='same', activation='tanh')(r) return Model(img, output_img)
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:28,代码来源:pixelda.py
示例29: build_generator# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Activation [as 别名]def build_generator(self): model = Sequential() model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim)) model.add(Reshape((7, 7, 128))) model.add(BatchNormalization(momentum=0.8)) model.add(UpSampling2D()) model.add(Conv2D(128, kernel_size=3, padding="same")) model.add(Activation("relu")) model.add(BatchNormalization(momentum=0.8)) model.add(UpSampling2D()) model.add(Conv2D(64, kernel_size=3, padding="same")) model.add(Activation("relu")) model.add(BatchNormalization(momentum=0.8)) model.add(Conv2D(self.channels, kernel_size=3, padding='same')) model.add(Activation("tanh")) model.summary() noise = Input(shape=(self.latent_dim,)) label = Input(shape=(1,), dtype='int32') label_embedding = Flatten()(Embedding(self.num_classes, self.latent_dim)(label)) model_input = multiply([noise, label_embedding]) img = model(model_input) return Model([noise, label], img)
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:30,代码来源:acgan.py
示例30: creat_model# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Activation [as 别名]def creat_model(input_shape, num_class): init = initializers.Orthogonal(gain=args.norm) sequence_input =Input(shape=input_shape) mask = Masking(mask_value=0.)(sequence_input) if args.aug: mask = augmentaion()(mask) X = Noise(0.075)(mask) if args.model[0:2]=='VA': # VA trans = LSTM(args.nhid,recurrent_activation='sigmoid',return_sequences=True,implementation=2,recurrent_initializer=init)(X) trans = Dropout(0.5)(trans) trans = TimeDistributed(Dense(3,kernel_initializer='zeros'))(trans) rot = LSTM(args.nhid,recurrent_activation='sigmoid',return_sequences=True,implementation=2,recurrent_initializer=init)(X) rot = Dropout(0.5)(rot) rot = TimeDistributed(Dense(3,kernel_initializer='zeros'))(rot) transform = Concatenate()([rot,trans]) X = VA()([mask,transform]) X = LSTM(args.nhid,recurrent_activation='sigmoid',return_sequences=True,implementation=2,recurrent_initializer=init)(X) X = Dropout(0.5)(X) X = LSTM(args.nhid,recurrent_activation='sigmoid',return_sequences=True,implementation=2,recurrent_initializer=init)(X) X = Dropout(0.5)(X) X = LSTM(args.nhid,recurrent_activation='sigmoid',return_sequences=True,implementation=2,recurrent_initializer=init)(X) X = Dropout(0.5)(X) X = TimeDistributed(Dense(num_class))(X) X = MeanOverTime()(X) X = Activation('softmax')(X) model=Model(sequence_input,X) return model
开发者ID:microsoft,项目名称:View-Adaptive-Neural-Networks-for-Skeleton-based-Human-Action-Recognition,代码行数:33,代码来源:va-rnn.py
|