您当前的位置:首页 > IT编程 > Keras
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Python layers.BatchNormalization方法代码示例

51自学网 2020-12-01 11:08:45
  Keras
这篇教程Python layers.BatchNormalization方法代码示例写得很实用,希望能帮到您。

本文整理汇总了Python中keras.layers.BatchNormalization方法的典型用法代码示例。如果您正苦于以下问题:Python layers.BatchNormalization方法的具体用法?Python layers.BatchNormalization怎么用?Python layers.BatchNormalization使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.layers的用法示例。

在下文中一共展示了layers.BatchNormalization方法的26个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: CausalCNN

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import BatchNormalization [as 别名]def CausalCNN(n_filters, lr, decay, loss,                seq_len, input_features,                strides_len, kernel_size,               dilation_rates):    inputs = Input(shape=(seq_len, input_features), name='input_layer')       x=inputs    for dilation_rate in dilation_rates:        x = Conv1D(filters=n_filters,               kernel_size=kernel_size,                padding='causal',               dilation_rate=dilation_rate,               activation='linear')(x)         x = BatchNormalization()(x)        x = Activation('relu')(x)    #x = Dense(7, activation='relu', name='dense_layer')(x)    outputs = Dense(3, activation='sigmoid', name='output_layer')(x)    causalcnn = Model(inputs, outputs=[outputs])    return causalcnn 
开发者ID:BruceBinBoxing,项目名称:Deep_Learning_Weather_Forecasting,代码行数:23,代码来源:weather_model.py


示例2: build_generator

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import BatchNormalization [as 别名]def build_generator(self):        model = Sequential()        model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim))        model.add(Reshape((7, 7, 128)))        model.add(BatchNormalization(momentum=0.8))        model.add(UpSampling2D())        model.add(Conv2D(128, kernel_size=3, padding="same"))        model.add(Activation("relu"))        model.add(BatchNormalization(momentum=0.8))        model.add(UpSampling2D())        model.add(Conv2D(64, kernel_size=3, padding="same"))        model.add(Activation("relu"))        model.add(BatchNormalization(momentum=0.8))        model.add(Conv2D(1, kernel_size=3, padding="same"))        model.add(Activation("tanh"))        model.summary()        noise = Input(shape=(self.latent_dim,))        img = model(noise)        return Model(noise, img) 
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:26,代码来源:sgan.py


示例3: build_discriminator

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import BatchNormalization [as 别名]def build_discriminator(self):        model = Sequential()        model.add(Conv2D(64, kernel_size=3, strides=2, input_shape=self.missing_shape, padding="same"))        model.add(LeakyReLU(alpha=0.2))        model.add(BatchNormalization(momentum=0.8))        model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))        model.add(LeakyReLU(alpha=0.2))        model.add(BatchNormalization(momentum=0.8))        model.add(Conv2D(256, kernel_size=3, padding="same"))        model.add(LeakyReLU(alpha=0.2))        model.add(BatchNormalization(momentum=0.8))        model.add(Flatten())        model.add(Dense(1, activation='sigmoid'))        model.summary()        img = Input(shape=self.missing_shape)        validity = model(img)        return Model(img, validity) 
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:23,代码来源:context_encoder.py


示例4: build_generator

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import BatchNormalization [as 别名]def build_generator(self):        model = Sequential()        model.add(Dense(512, input_dim=self.latent_dim))        model.add(LeakyReLU(alpha=0.2))        model.add(BatchNormalization(momentum=0.8))        model.add(Dense(512))        model.add(LeakyReLU(alpha=0.2))        model.add(BatchNormalization(momentum=0.8))        model.add(Dense(np.prod(self.img_shape), activation='tanh'))        model.add(Reshape(self.img_shape))        model.summary()        z = Input(shape=(self.latent_dim,))        gen_img = model(z)        return Model(z, gen_img) 
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:20,代码来源:bigan.py


示例5: build_generator

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import BatchNormalization [as 别名]def build_generator(self):        model = Sequential()        model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim))        model.add(Reshape((7, 7, 128)))        model.add(UpSampling2D())        model.add(Conv2D(128, kernel_size=4, padding="same"))        model.add(BatchNormalization(momentum=0.8))        model.add(Activation("relu"))        model.add(UpSampling2D())        model.add(Conv2D(64, kernel_size=4, padding="same"))        model.add(BatchNormalization(momentum=0.8))        model.add(Activation("relu"))        model.add(Conv2D(self.channels, kernel_size=4, padding="same"))        model.add(Activation("tanh"))        model.summary()        noise = Input(shape=(self.latent_dim,))        img = model(noise)        return Model(noise, img) 
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:25,代码来源:wgan.py


示例6: build_discriminator

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import BatchNormalization [as 别名]def build_discriminator(self):        def d_layer(layer_input, filters, f_size=4, bn=True):            """Discriminator layer"""            d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input)            d = LeakyReLU(alpha=0.2)(d)            if bn:                d = BatchNormalization(momentum=0.8)(d)            return d        img_A = Input(shape=self.img_shape)        img_B = Input(shape=self.img_shape)        # Concatenate image and conditioning image by channels to produce input        combined_imgs = Concatenate(axis=-1)([img_A, img_B])        d1 = d_layer(combined_imgs, self.df, bn=False)        d2 = d_layer(d1, self.df*2)        d3 = d_layer(d2, self.df*4)        d4 = d_layer(d3, self.df*8)        validity = Conv2D(1, kernel_size=4, strides=1, padding='same')(d4)        return Model([img_A, img_B], validity) 
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:26,代码来源:pix2pix.py


示例7: build_generator

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import BatchNormalization [as 别名]def build_generator(self):        model = Sequential()        model.add(Dense(256, input_dim=self.latent_dim))        model.add(LeakyReLU(alpha=0.2))        model.add(BatchNormalization(momentum=0.8))        model.add(Dense(512))        model.add(LeakyReLU(alpha=0.2))        model.add(BatchNormalization(momentum=0.8))        model.add(Dense(1024))        model.add(LeakyReLU(alpha=0.2))        model.add(BatchNormalization(momentum=0.8))        model.add(Dense(np.prod(self.img_shape), activation='tanh'))        model.add(Reshape(self.img_shape))        model.summary()        noise = Input(shape=(self.latent_dim,))        img = model(noise)        return Model(noise, img) 
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:24,代码来源:lsgan.py


示例8: build_generator

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import BatchNormalization [as 别名]def build_generator(self):        model = Sequential()        model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim))        model.add(Reshape((7, 7, 128)))        model.add(UpSampling2D())        model.add(Conv2D(128, kernel_size=3, padding="same"))        model.add(BatchNormalization(momentum=0.8))        model.add(Activation("relu"))        model.add(UpSampling2D())        model.add(Conv2D(64, kernel_size=3, padding="same"))        model.add(BatchNormalization(momentum=0.8))        model.add(Activation("relu"))        model.add(Conv2D(self.channels, kernel_size=3, padding="same"))        model.add(Activation("tanh"))        model.summary()        noise = Input(shape=(self.latent_dim,))        img = model(noise)        return Model(noise, img) 
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:25,代码来源:dcgan.py


示例9: _initial_conv_block_inception

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import BatchNormalization [as 别名]def _initial_conv_block_inception(input, initial_conv_filters, weight_decay=5e-4):    ''' Adds an initial conv block, with batch norm and relu for the DPN    Args:        input: input tensor        initial_conv_filters: number of filters for initial conv block        weight_decay: weight decay factor    Returns: a keras tensor    '''    channel_axis = 1 if K.image_data_format() == 'channels_first' else -1    x = Conv2D(initial_conv_filters, (7, 7), padding='same', use_bias=False, kernel_initializer='he_normal',               kernel_regularizer=l2(weight_decay), strides=(2, 2))(input)    x = BatchNormalization(axis=channel_axis)(x)    x = Activation('relu')(x)    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)    return x 
开发者ID:titu1994,项目名称:Keras-DualPathNetworks,代码行数:20,代码来源:dual_path_network.py


示例10: weather_conv1D

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import BatchNormalization [as 别名]def weather_conv1D(layers, lr, decay, loss,                input_len, input_features,                strides_len, kernel_size):        inputs = Input(shape=(input_len, input_features), name='input_layer')    for i, hidden_nums in enumerate(layers):        if i==0:            #inputs = BatchNormalization(name='BN_input')(inputs)            hn = Conv1D(hidden_nums, kernel_size=kernel_size, strides=strides_len,                         data_format='channels_last',                         padding='same', activation='linear')(inputs)            hn = BatchNormalization(name='BN_{}'.format(i))(hn)            hn = Activation('relu')(hn)        elif i<len(layers)-1:            hn = Conv1D(hidden_nums, kernel_size=kernel_size, strides=strides_len,                        data_format='channels_last',                         padding='same',activation='linear')(hn)            hn = BatchNormalization(name='BN_{}'.format(i))(hn)             hn = Activation('relu')(hn)        else:            hn = Conv1D(hidden_nums, kernel_size=kernel_size, strides=strides_len,                        data_format='channels_last',                         padding='same',activation='linear')(hn)            hn = BatchNormalization(name='BN_{}'.format(i))(hn)     outputs = Dense(80, activation='relu', name='dense_layer')(hn)    outputs = Dense(3, activation='tanh', name='output_layer')(outputs)    weather_model = Model(inputs, outputs=[outputs])    return weather_model 
开发者ID:BruceBinBoxing,项目名称:Deep_Learning_Weather_Forecasting,代码行数:33,代码来源:weather_model.py


示例11: weather_fnn

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import BatchNormalization [as 别名]def weather_fnn(layers, lr,            decay, loss, seq_len,             input_features, output_features):        ori_inputs = Input(shape=(seq_len, input_features), name='input_layer')    #print(seq_len*input_features)    conv_ = Conv1D(11, kernel_size=13, strides=1,                         data_format='channels_last',                         padding='valid', activation='linear')(ori_inputs)    conv_ = BatchNormalization(name='BN_conv')(conv_)    conv_ = Activation('relu')(conv_)    conv_ = Conv1D(5, kernel_size=7, strides=1,                         data_format='channels_last',                         padding='valid', activation='linear')(conv_)    conv_ = BatchNormalization(name='BN_conv2')(conv_)    conv_ = Activation('relu')(conv_)    inputs = Reshape((-1,))(conv_)    for i, hidden_nums in enumerate(layers):        if i==0:            hn = Dense(hidden_nums, activation='linear')(inputs)            hn = BatchNormalization(name='BN_{}'.format(i))(hn)            hn = Activation('relu')(hn)        else:            hn = Dense(hidden_nums, activation='linear')(hn)            hn = BatchNormalization(name='BN_{}'.format(i))(hn)            hn = Activation('relu')(hn)            #hn = Dropout(0.1)(hn)    #print(seq_len, output_features)    #print(hn)    outputs = Dense(seq_len*output_features, activation='sigmoid', name='output_layer')(hn) # 37*3    outputs = Reshape((seq_len, output_features))(outputs)    weather_fnn = Model(ori_inputs, outputs=[outputs])    return weather_fnn 
开发者ID:BruceBinBoxing,项目名称:Deep_Learning_Weather_Forecasting,代码行数:39,代码来源:weather_model.py


示例12: _get_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import BatchNormalization [as 别名]def _get_model(X, cat_cols, num_cols, n_uniq, n_emb, output_activation):        inputs = []        num_inputs = []        embeddings = []        for i, col in enumerate(cat_cols):            if not n_uniq[i]:                n_uniq[i] = X[col].nunique()            if not n_emb[i]:                n_emb[i] = max(MIN_EMBEDDING, 2 * int(np.log2(n_uniq[i])))            _input = Input(shape=(1,), name=col)            _embed = Embedding(input_dim=n_uniq[i], output_dim=n_emb[i], name=col + EMBEDDING_SUFFIX)(_input)            _embed = Dropout(.2)(_embed)            _embed = Reshape((n_emb[i],))(_embed)            inputs.append(_input)            embeddings.append(_embed)        if num_cols:            num_inputs = Input(shape=(len(num_cols),), name='num_inputs')            merged_input = Concatenate(axis=1)(embeddings + [num_inputs])            inputs = inputs + [num_inputs]        else:            merged_input = Concatenate(axis=1)(embeddings)        x = BatchNormalization()(merged_input)        x = Dense(128, activation='relu')(x)        x = Dropout(.5)(x)        x = BatchNormalization()(x)        x = Dense(64, activation='relu')(x)        x = Dropout(.5)(x)        x = BatchNormalization()(x)        output = Dense(1, activation=output_activation)(x)        model = Model(inputs=inputs, outputs=output)        return model, n_emb, n_uniq 
开发者ID:jeongyoonlee,项目名称:Kaggler,代码行数:41,代码来源:categorical.py


示例13: ss_bt

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import BatchNormalization [as 别名]def ss_bt(self, x, dilation, strides=(1, 1), padding='same'):        x1, x2 = self.channel_split(x)        filters = (int(x.shape[-1]) // self.groups)        x1 = layers.Conv2D(filters, kernel_size=(3, 1), strides=strides, padding=padding)(x1)        x1 = layers.Activation('relu')(x1)        x1 = layers.Conv2D(filters, kernel_size=(1, 3), strides=strides, padding=padding)(x1)        x1 = layers.BatchNormalization()(x1)        x1 = layers.Activation('relu')(x1)        x1 = layers.Conv2D(filters, kernel_size=(3, 1), strides=strides, padding=padding, dilation_rate=(dilation, 1))(            x1)        x1 = layers.Activation('relu')(x1)        x1 = layers.Conv2D(filters, kernel_size=(1, 3), strides=strides, padding=padding, dilation_rate=(1, dilation))(            x1)        x1 = layers.BatchNormalization()(x1)        x1 = layers.Activation('relu')(x1)        x2 = layers.Conv2D(filters, kernel_size=(1, 3), strides=strides, padding=padding)(x2)        x2 = layers.Activation('relu')(x2)        x2 = layers.Conv2D(filters, kernel_size=(3, 1), strides=strides, padding=padding)(x2)        x2 = layers.BatchNormalization()(x2)        x2 = layers.Activation('relu')(x2)        x2 = layers.Conv2D(filters, kernel_size=(1, 3), strides=strides, padding=padding, dilation_rate=(1, dilation))(            x2)        x2 = layers.Activation('relu')(x2)        x2 = layers.Conv2D(filters, kernel_size=(3, 1), strides=strides, padding=padding, dilation_rate=(dilation, 1))(            x2)        x2 = layers.BatchNormalization()(x2)        x2 = layers.Activation('relu')(x2)        x_concat = layers.concatenate([x1, x2], axis=-1)        x_add = layers.add([x, x_concat])        output = self.channel_shuffle(x_add)        return output 
开发者ID:JACKYLUO1991,项目名称:Face-skin-hair-segmentaiton-and-skin-color-evaluation,代码行数:34,代码来源:lednet.py


示例14: down_sample

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import BatchNormalization [as 别名]def down_sample(self, x, filters):        x_filters = int(x.shape[-1])        x_conv = layers.Conv2D(filters - x_filters, kernel_size=3, strides=(2, 2), padding='same')(x)        x_pool = layers.MaxPool2D()(x)        x = layers.concatenate([x_conv, x_pool], axis=-1)        x = layers.BatchNormalization()(x)        x = layers.Activation('relu')(x)        return x 
开发者ID:JACKYLUO1991,项目名称:Face-skin-hair-segmentaiton-and-skin-color-evaluation,代码行数:10,代码来源:lednet.py


示例15: apn_module

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import BatchNormalization [as 别名]def apn_module(self, x):        def right(x):            x = layers.AveragePooling2D()(x)            x = layers.Conv2D(self.classes, kernel_size=1, padding='same')(x)            x = layers.BatchNormalization()(x)            x = layers.Activation('relu')(x)            x = layers.UpSampling2D(interpolation='bilinear')(x)            return x        def conv(x, filters, kernel_size, stride):            x = layers.Conv2D(filters, kernel_size=kernel_size, strides=(stride, stride), padding='same')(x)            x = layers.BatchNormalization()(x)            x = layers.Activation('relu')(x)            return x        x_7 = conv(x, int(x.shape[-1]), 7, stride=2)        x_5 = conv(x_7, int(x.shape[-1]), 5, stride=2)        x_3 = conv(x_5, int(x.shape[-1]), 3, stride=2)        x_3_1 = conv(x_3, self.classes, 3, stride=1)        x_3_1_up = layers.UpSampling2D(interpolation='bilinear')(x_3_1)        x_5_1 = conv(x_5, self.classes, 5, stride=1)        x_3_5 = layers.add([x_5_1, x_3_1_up])        x_3_5_up = layers.UpSampling2D(interpolation='bilinear')(x_3_5)        x_7_1 = conv(x_7, self.classes, 3, stride=1)        x_3_5_7 = layers.add([x_7_1, x_3_5_up])        x_3_5_7_up = layers.UpSampling2D(interpolation='bilinear')(x_3_5_7)        x_middle = conv(x, self.classes, 1, stride=1)        x_middle = layers.multiply([x_3_5_7_up, x_middle])        x_right = right(x)        x_middle = layers.add([x_middle, x_right])        return x_middle 
开发者ID:JACKYLUO1991,项目名称:Face-skin-hair-segmentaiton-and-skin-color-evaluation,代码行数:37,代码来源:lednet.py


示例16: decoder

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import BatchNormalization [as 别名]def decoder(self, x):        x = self.apn_module(x)        x = layers.UpSampling2D(size=8, interpolation='bilinear')(x)        x = layers.Conv2D(self.classes, kernel_size=3, padding='same')(x)        x = layers.BatchNormalization()(x)        x = layers.Activation('softmax')(x)        return x 
开发者ID:JACKYLUO1991,项目名称:Face-skin-hair-segmentaiton-and-skin-color-evaluation,代码行数:9,代码来源:lednet.py


示例17: conv2d_bn

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import BatchNormalization [as 别名]def conv2d_bn(x,              filters,              kernel_size,              strides=1,              padding='same',              activation='relu',              use_bias=False,              name=None):    """Utility function to apply conv + BN.    # Arguments        x: input tensor.        filters: filters in `Conv2D`.        kernel_size: kernel size as in `Conv2D`.        padding: padding mode in `Conv2D`.        activation: activation in `Conv2D`.        strides: strides in `Conv2D`.        name: name of the ops; will become `name + '_ac'` for the activation            and `name + '_bn'` for the batch norm layer.    # Returns        Output tensor after applying `Conv2D` and `BatchNormalization`.    """    x = Conv2D(filters,               kernel_size,               strides=strides,               padding=padding,               use_bias=use_bias,               name=name)(x)    if not use_bias:        bn_axis = 1 if K.image_data_format() == 'channels_first' else 3        bn_name = None if name is None else name + '_bn'        x = BatchNormalization(axis=bn_axis, scale=False, name=bn_name)(x)    if activation is not None:        ac_name = None if name is None else name + '_ac'        x = Activation(activation, name=ac_name)(x)    return x 
开发者ID:killthekitten,项目名称:kaggle-carvana-2017,代码行数:39,代码来源:inception_resnet_v2.py


示例18: identity_block

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import BatchNormalization [as 别名]def identity_block(input_tensor, kernel_size, filters, stage, block):    """The identity block is the block that has no conv layer at shortcut.    # Arguments        input_tensor: input tensor        kernel_size: default 3, the kernel size of middle conv layer at main path        filters: list of integers, the filters of 3 conv layer at main path        stage: integer, current stage label, used for generating layer names        block: 'a','b'keras.., current block label, used for generating layer names    # Returns        Output tensor for the block.    """    filters1, filters2, filters3 = filters    if K.image_data_format() == 'channels_last':        bn_axis = 3    else:        bn_axis = 1    conv_name_base = 'res' + str(stage) + block + '_branch'    bn_name_base = 'bn' + str(stage) + block + '_branch'    x = Conv2D(filters1, (1, 1), name=conv_name_base + '2a')(input_tensor)    x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)    x = Activation('relu')(x)    x = Conv2D(filters2, kernel_size,               padding='same', name=conv_name_base + '2b')(x)    x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)    x = Activation('relu')(x)    x = Conv2D(filters3, (1, 1), name=conv_name_base + '2c')(x)    x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)    x = layers.add([x, input_tensor])    x = Activation('relu')(x)    return x 
开发者ID:killthekitten,项目名称:kaggle-carvana-2017,代码行数:38,代码来源:resnet50_fixed.py


示例19: build_discriminator

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import BatchNormalization [as 别名]def build_discriminator(self):        model = Sequential()        model.add(Conv2D(32, kernel_size=3, strides=2, input_shape=self.img_shape, padding="same"))        model.add(LeakyReLU(alpha=0.2))        model.add(Dropout(0.25))        model.add(Conv2D(64, kernel_size=3, strides=2, padding="same"))        model.add(ZeroPadding2D(padding=((0,1),(0,1))))        model.add(LeakyReLU(alpha=0.2))        model.add(Dropout(0.25))        model.add(BatchNormalization(momentum=0.8))        model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))        model.add(LeakyReLU(alpha=0.2))        model.add(Dropout(0.25))        model.add(BatchNormalization(momentum=0.8))        model.add(Conv2D(256, kernel_size=3, strides=1, padding="same"))        model.add(LeakyReLU(alpha=0.2))        model.add(Dropout(0.25))        model.add(Flatten())        model.summary()        img = Input(shape=self.img_shape)        features = model(img)        valid = Dense(1, activation="sigmoid")(features)        label = Dense(self.num_classes+1, activation="softmax")(features)        return Model(img, [valid, label]) 
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:32,代码来源:sgan.py


示例20: build_generator

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import BatchNormalization [as 别名]def build_generator(self):        model = Sequential()        # Encoder        model.add(Conv2D(32, kernel_size=3, strides=2, input_shape=self.img_shape, padding="same"))        model.add(LeakyReLU(alpha=0.2))        model.add(BatchNormalization(momentum=0.8))        model.add(Conv2D(64, kernel_size=3, strides=2, padding="same"))        model.add(LeakyReLU(alpha=0.2))        model.add(BatchNormalization(momentum=0.8))        model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))        model.add(LeakyReLU(alpha=0.2))        model.add(BatchNormalization(momentum=0.8))        model.add(Conv2D(512, kernel_size=1, strides=2, padding="same"))        model.add(LeakyReLU(alpha=0.2))        model.add(Dropout(0.5))        # Decoder        model.add(UpSampling2D())        model.add(Conv2D(128, kernel_size=3, padding="same"))        model.add(Activation('relu'))        model.add(BatchNormalization(momentum=0.8))        model.add(UpSampling2D())        model.add(Conv2D(64, kernel_size=3, padding="same"))        model.add(Activation('relu'))        model.add(BatchNormalization(momentum=0.8))        model.add(Conv2D(self.channels, kernel_size=3, padding="same"))        model.add(Activation('tanh'))        model.summary()        masked_img = Input(shape=self.img_shape)        gen_missing = model(masked_img)        return Model(masked_img, gen_missing) 
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:40,代码来源:context_encoder.py


示例21: build_generator

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import BatchNormalization [as 别名]def build_generator(self):        """U-Net Generator"""        def conv2d(layer_input, filters, f_size=4, bn=True):            """Layers used during downsampling"""            d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input)            d = LeakyReLU(alpha=0.2)(d)            if bn:                d = BatchNormalization(momentum=0.8)(d)            return d        def deconv2d(layer_input, skip_input, filters, f_size=4, dropout_rate=0):            """Layers used during upsampling"""            u = UpSampling2D(size=2)(layer_input)            u = Conv2D(filters, kernel_size=f_size, strides=1, padding='same', activation='relu')(u)            if dropout_rate:                u = Dropout(dropout_rate)(u)            u = BatchNormalization(momentum=0.8)(u)            u = Concatenate()([u, skip_input])            return u        img = Input(shape=self.img_shape)        # Downsampling        d1 = conv2d(img, self.gf, bn=False)        d2 = conv2d(d1, self.gf*2)        d3 = conv2d(d2, self.gf*4)        d4 = conv2d(d3, self.gf*8)        # Upsampling        u1 = deconv2d(d4, d3, self.gf*4)        u2 = deconv2d(u1, d2, self.gf*2)        u3 = deconv2d(u2, d1, self.gf)        u4 = UpSampling2D(size=2)(u3)        output_img = Conv2D(self.channels, kernel_size=4, strides=1, padding='same', activation='tanh')(u4)        return Model(img, output_img) 
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:40,代码来源:ccgan.py


示例22: build_discriminator

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import BatchNormalization [as 别名]def build_discriminator(self):        def d_block(layer_input, filters, strides=1, bn=True):            """Discriminator layer"""            d = Conv2D(filters, kernel_size=3, strides=strides, padding='same')(layer_input)            d = LeakyReLU(alpha=0.2)(d)            if bn:                d = BatchNormalization(momentum=0.8)(d)            return d        # Input img        d0 = Input(shape=self.hr_shape)        d1 = d_block(d0, self.df, bn=False)        d2 = d_block(d1, self.df, strides=2)        d3 = d_block(d2, self.df*2)        d4 = d_block(d3, self.df*2, strides=2)        d5 = d_block(d4, self.df*4)        d6 = d_block(d5, self.df*4, strides=2)        d7 = d_block(d6, self.df*8)        d8 = d_block(d7, self.df*8, strides=2)        d9 = Dense(self.df*16)(d8)        d10 = LeakyReLU(alpha=0.2)(d9)        validity = Dense(1, activation='sigmoid')(d10)        return Model(d0, validity) 
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:29,代码来源:srgan.py


示例23: build_generator

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import BatchNormalization [as 别名]def build_generator(self):        model = Sequential()        model.add(Dense(256, input_dim=self.latent_dim))        model.add(LeakyReLU(alpha=0.2))        model.add(BatchNormalization(momentum=0.8))        model.add(Dense(512))        model.add(LeakyReLU(alpha=0.2))        model.add(BatchNormalization(momentum=0.8))        model.add(Dense(1024))        model.add(LeakyReLU(alpha=0.2))        model.add(BatchNormalization(momentum=0.8))        model.add(Dense(np.prod(self.img_shape), activation='tanh'))        model.add(Reshape(self.img_shape))        model.summary()        noise = Input(shape=(self.latent_dim,))        label = Input(shape=(1,), dtype='int32')        label_embedding = Flatten()(Embedding(self.num_classes, self.latent_dim)(label))        model_input = multiply([noise, label_embedding])        img = model(model_input)        return Model([noise, label], img) 
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:28,代码来源:cgan.py


示例24: build_generator

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import BatchNormalization [as 别名]def build_generator(self):        """Resnet Generator"""        def residual_block(layer_input):            """Residual block described in paper"""            d = Conv2D(64, kernel_size=3, strides=1, padding='same')(layer_input)            d = BatchNormalization(momentum=0.8)(d)            d = Activation('relu')(d)            d = Conv2D(64, kernel_size=3, strides=1, padding='same')(d)            d = BatchNormalization(momentum=0.8)(d)            d = Add()([d, layer_input])            return d        # Image input        img = Input(shape=self.img_shape)        l1 = Conv2D(64, kernel_size=3, padding='same', activation='relu')(img)        # Propogate signal through residual blocks        r = residual_block(l1)        for _ in range(self.residual_blocks - 1):            r = residual_block(r)        output_img = Conv2D(self.channels, kernel_size=3, padding='same', activation='tanh')(r)        return Model(img, output_img) 
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:28,代码来源:pixelda.py


示例25: build_disk_and_q_net

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import BatchNormalization [as 别名]def build_disk_and_q_net(self):        img = Input(shape=self.img_shape)        # Shared layers between discriminator and recognition network        model = Sequential()        model.add(Conv2D(64, kernel_size=3, strides=2, input_shape=self.img_shape, padding="same"))        model.add(LeakyReLU(alpha=0.2))        model.add(Dropout(0.25))        model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))        model.add(ZeroPadding2D(padding=((0,1),(0,1))))        model.add(LeakyReLU(alpha=0.2))        model.add(Dropout(0.25))        model.add(BatchNormalization(momentum=0.8))        model.add(Conv2D(256, kernel_size=3, strides=2, padding="same"))        model.add(LeakyReLU(alpha=0.2))        model.add(Dropout(0.25))        model.add(BatchNormalization(momentum=0.8))        model.add(Conv2D(512, kernel_size=3, strides=2, padding="same"))        model.add(LeakyReLU(alpha=0.2))        model.add(Dropout(0.25))        model.add(BatchNormalization(momentum=0.8))        model.add(Flatten())        img_embedding = model(img)        # Discriminator        validity = Dense(1, activation='sigmoid')(img_embedding)        # Recognition        q_net = Dense(128, activation='relu')(img_embedding)        label = Dense(self.num_classes, activation='softmax')(q_net)        # Return discriminator and recognition network        return Model(img, validity), Model(img, label) 
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:37,代码来源:infogan.py


示例26: build_critic

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import BatchNormalization [as 别名]def build_critic(self):        model = Sequential()        model.add(Conv2D(16, kernel_size=3, strides=2, input_shape=self.img_shape, padding="same"))        model.add(LeakyReLU(alpha=0.2))        model.add(Dropout(0.25))        model.add(Conv2D(32, kernel_size=3, strides=2, padding="same"))        model.add(ZeroPadding2D(padding=((0,1),(0,1))))        model.add(BatchNormalization(momentum=0.8))        model.add(LeakyReLU(alpha=0.2))        model.add(Dropout(0.25))        model.add(Conv2D(64, kernel_size=3, strides=2, padding="same"))        model.add(BatchNormalization(momentum=0.8))        model.add(LeakyReLU(alpha=0.2))        model.add(Dropout(0.25))        model.add(Conv2D(128, kernel_size=3, strides=1, padding="same"))        model.add(BatchNormalization(momentum=0.8))        model.add(LeakyReLU(alpha=0.2))        model.add(Dropout(0.25))        model.add(Flatten())        model.add(Dense(1))        model.summary()        img = Input(shape=self.img_shape)        validity = model(img)        return Model(img, validity) 
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:31,代码来源:wgan.py


万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。