您当前的位置:首页 > IT编程 > Keras
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Python layers.Embedding方法代码示例

51自学网 2020-12-01 11:08:47
  Keras
这篇教程Python layers.Embedding方法代码示例写得很实用,希望能帮到您。

本文整理汇总了Python中keras.layers.Embedding方法的典型用法代码示例。如果您正苦于以下问题:Python layers.Embedding方法的具体用法?Python layers.Embedding怎么用?Python layers.Embedding使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.layers的用法示例。

在下文中一共展示了layers.Embedding方法的29个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: RNNModel

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Embedding [as 别名]def RNNModel(vocab_size, max_len, rnnConfig, model_type):	embedding_size = rnnConfig['embedding_size']	if model_type == 'inceptionv3':		# InceptionV3 outputs a 2048 dimensional vector for each image, which we'll feed to RNN Model		image_input = Input(shape=(2048,))	elif model_type == 'vgg16':		# VGG16 outputs a 4096 dimensional vector for each image, which we'll feed to RNN Model		image_input = Input(shape=(4096,))	image_model_1 = Dropout(rnnConfig['dropout'])(image_input)	image_model = Dense(embedding_size, activation='relu')(image_model_1)	caption_input = Input(shape=(max_len,))	# mask_zero: We zero pad inputs to the same length, the zero mask ignores those inputs. E.g. it is an efficiency.	caption_model_1 = Embedding(vocab_size, embedding_size, mask_zero=True)(caption_input)	caption_model_2 = Dropout(rnnConfig['dropout'])(caption_model_1)	caption_model = LSTM(rnnConfig['LSTM_units'])(caption_model_2)	# Merging the models and creating a softmax classifier	final_model_1 = concatenate([image_model, caption_model])	final_model_2 = Dense(rnnConfig['dense_units'], activation='relu')(final_model_1)	final_model = Dense(vocab_size, activation='softmax')(final_model_2)	model = Model(inputs=[image_input, caption_input], outputs=final_model)	model.compile(loss='categorical_crossentropy', optimizer='adam')	return model 
开发者ID:dabasajay,项目名称:Image-Caption-Generator,代码行数:27,代码来源:model.py


示例2: get_model_41

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Embedding [as 别名]def get_model_41(params):    embedding_weights = pickle.load(open("../data/datasets/train_data/embedding_weights_w2v-google_MSD-AG.pk","rb"))    # main sequential model    model = Sequential()    model.add(Embedding(len(embedding_weights[0]), params['embedding_dim'], input_length=params['sequence_length'],                        weights=embedding_weights))    #model.add(Dropout(params['dropout_prob'][0], input_shape=(params['sequence_length'], params['embedding_dim'])))    model.add(LSTM(2048))    #model.add(Dropout(params['dropout_prob'][1]))    model.add(Dense(output_dim=params["n_out"], init="uniform"))    model.add(Activation(params['final_activation']))    logging.debug("Output CNN: %s" % str(model.output_shape))    if params['final_activation'] == 'linear':        model.add(Lambda(lambda x :K.l2_normalize(x, axis=1)))    return model# CRNN Arch for audio 
开发者ID:sergiooramas,项目名称:tartarus,代码行数:22,代码来源:models.py


示例3: create_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Embedding [as 别名]def create_model():    inputs = Input(shape=(length,), dtype='int32', name='inputs')    embedding_1 = Embedding(len(vocab), EMBED_DIM, input_length=length, mask_zero=True)(inputs)    bilstm = Bidirectional(LSTM(EMBED_DIM // 2, return_sequences=True))(embedding_1)    bilstm_dropout = Dropout(DROPOUT_RATE)(bilstm)    embedding_2 = Embedding(len(vocab), EMBED_DIM, input_length=length)(inputs)    con = Conv1D(filters=FILTERS, kernel_size=2 * HALF_WIN_SIZE + 1, padding='same')(embedding_2)    con_d = Dropout(DROPOUT_RATE)(con)    dense_con = TimeDistributed(Dense(DENSE_DIM))(con_d)    rnn_cnn = concatenate([bilstm_dropout, dense_con], axis=2)    dense = TimeDistributed(Dense(len(chunk_tags)))(rnn_cnn)    crf = CRF(len(chunk_tags), sparse_target=True)    crf_output = crf(dense)    model = Model(input=[inputs], output=[crf_output])    model.compile(loss=crf.loss_function, optimizer=Adam(), metrics=[crf.accuracy])    return model 
开发者ID:jtyoui,项目名称:Jtyoui,代码行数:18,代码来源:cnn_rnn_crf.py


示例4: add_glove_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Embedding [as 别名]def add_glove_model(self):        """        Read and save Pretrained Embedding model        """        embeddings_index = {}        try:            f = open(self.embedded_dir)            for line in f:                values = line.split()                word = values[0]                coefs = np.asarray(values[1:], dtype='float32')                assert (coefs.shape[0] == self.embed_size)                embeddings_index[word] = coefs            f.close()        except OSError:            print('Embedded file does not found')            exit()        except AssertionError:            print("Embedding vector size does not match with given embedded size")        return embeddings_index 
开发者ID:Hsankesara,项目名称:DeepResearch,代码行数:22,代码来源:HAN.py


示例5: get_embedding_matrix

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Embedding [as 别名]def get_embedding_matrix(self):        """        Returns Embedding matrix        """        embedding_matrix = np.random.random((len(self.word_index) + 1, self.embed_size))        absent_words = 0        for word, i in self.word_index.items():            embedding_vector = self.embedding_index.get(word)            if embedding_vector is not None:                # words not found in embedding index will be all-zeros.                embedding_matrix[i] = embedding_vector            else:                absent_words += 1        if self.verbose == 1:            print('Total absent words are', absent_words, 'which is', "%0.2f" %                (absent_words * 100 / len(self.word_index)), '% of total words')        return embedding_matrix 
开发者ID:Hsankesara,项目名称:DeepResearch,代码行数:19,代码来源:HAN.py


示例6: GeneratorPretraining

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Embedding [as 别名]def GeneratorPretraining(V, E, H):    '''    Model for Generator pretraining. This model's weights should be shared with        Generator.    # Arguments:        V: int, Vocabrary size        E: int, Embedding size        H: int, LSTM hidden size    # Returns:        generator_pretraining: keras Model            input: word ids, shape = (B, T)            output: word probability, shape = (B, T, V)    '''    # in comment, B means batch size, T means lengths of time steps.    input = Input(shape=(None,), dtype='int32', name='Input') # (B, T)    out = Embedding(V, E, mask_zero=True, name='Embedding')(input) # (B, T, E)    out = LSTM(H, return_sequences=True, name='LSTM')(out)  # (B, T, H)    out = TimeDistributed(        Dense(V, activation='softmax', name='DenseSoftmax'),        name='TimeDenseSoftmax')(out)    # (B, T, V)    generator_pretraining = Model(input, out)    return generator_pretraining 
开发者ID:tyo-yo,项目名称:SeqGAN,代码行数:24,代码来源:models.py


示例7: __init__

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Embedding [as 别名]def __init__(self, sess, B, V, E, H, lr=1e-3):        '''        # Arguments:            B: int, Batch size            V: int, Vocabrary size            E: int, Embedding size            H: int, LSTM hidden size        # Optional Arguments:            lr: float, learning rate, default is 0.001        '''        self.sess = sess        self.B = B        self.V = V        self.E = E        self.H = H        self.lr = lr        self._build_gragh()        self.reset_rnn_state() 
开发者ID:tyo-yo,项目名称:SeqGAN,代码行数:20,代码来源:models.py


示例8: Discriminator

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Embedding [as 别名]def Discriminator(V, E, H=64, dropout=0.1):    '''    Disciriminator model.    # Arguments:        V: int, Vocabrary size        E: int, Embedding size        H: int, LSTM hidden size        dropout: float    # Returns:        discriminator: keras model            input: word ids, shape = (B, T)            output: probability of true data or not, shape = (B, 1)    '''    input = Input(shape=(None,), dtype='int32', name='Input')   # (B, T)    out = Embedding(V, E, mask_zero=True, name='Embedding')(input)  # (B, T, E)    out = LSTM(H)(out)    out = Highway(out, num_layers=1)    out = Dropout(dropout, name='Dropout')(out)    out = Dense(1, activation='sigmoid', name='FC')(out)    discriminator = Model(input, out)    return discriminator 
开发者ID:tyo-yo,项目名称:SeqGAN,代码行数:24,代码来源:models.py


示例9: DiscriminatorConv

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Embedding [as 别名]def DiscriminatorConv(V, E, filter_sizes, num_filters, dropout):    '''    Another Discriminator model, currently unused because keras don't support    masking for Conv1D and it does huge influence on training.    # Arguments:        V: int, Vocabrary size        E: int, Embedding size        filter_sizes: list of int, list of each Conv1D filter sizes        num_filters: list of int, list of each Conv1D num of filters        dropout: float    # Returns:        discriminator: keras model            input: word ids, shape = (B, T)            output: probability of true data or not, shape = (B, 1)    '''    input = Input(shape=(None,), dtype='int32', name='Input')   # (B, T)    out = Embedding(V, E, name='Embedding')(input)  # (B, T, E)    out = VariousConv1D(out, filter_sizes, num_filters)    out = Highway(out, num_layers=1)    out = Dropout(dropout, name='Dropout')(out)    out = Dense(1, activation='sigmoid', name='FC')(out)    discriminator = Model(input, out)    return discriminator 
开发者ID:tyo-yo,项目名称:SeqGAN,代码行数:26,代码来源:models.py


示例10: parse_args

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Embedding [as 别名]def parse_args():    parser = argparse.ArgumentParser(description="Run GMF.")    parser.add_argument('--path', nargs='?', default='Data/',                        help='Input data path.')    parser.add_argument('--dataset', nargs='?', default='ml-1m',                        help='Choose a dataset.')    parser.add_argument('--epochs', type=int, default=100,                        help='Number of epochs.')    parser.add_argument('--batch_size', type=int, default=256,                        help='Batch size.')    parser.add_argument('--num_factors', type=int, default=8,                        help='Embedding size.')    parser.add_argument('--regs', nargs='?', default='[0,0]',                        help="Regularization for user and item embeddings.")    parser.add_argument('--num_neg', type=int, default=4,                        help='Number of negative instances to pair with a positive instance.')    parser.add_argument('--lr', type=float, default=0.001,                        help='Learning rate.')    parser.add_argument('--learner', nargs='?', default='adam',                        help='Specify an optimizer: adagrad, adam, rmsprop, sgd')    parser.add_argument('--verbose', type=int, default=1,                        help='Show performance per X iterations')    parser.add_argument('--out', type=int, default=1,                        help='Whether to save the trained model.')    return parser.parse_args() 
开发者ID:hexiangnan,项目名称:neural_collaborative_filtering,代码行数:27,代码来源:GMF.py


示例11: get_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Embedding [as 别名]def get_model(num_users, num_items, latent_dim, regs=[0,0]):    # Input variables    user_input = Input(shape=(1,), dtype='int32', name = 'user_input')    item_input = Input(shape=(1,), dtype='int32', name = 'item_input')    MF_Embedding_User = Embedding(input_dim = num_users, output_dim = latent_dim, name = 'user_embedding',                                  init = init_normal, W_regularizer = l2(regs[0]), input_length=1)    MF_Embedding_Item = Embedding(input_dim = num_items, output_dim = latent_dim, name = 'item_embedding',                                  init = init_normal, W_regularizer = l2(regs[1]), input_length=1)           # Crucial to flatten an embedding vector!    user_latent = Flatten()(MF_Embedding_User(user_input))    item_latent = Flatten()(MF_Embedding_Item(item_input))        # Element-wise product of user and item embeddings     predict_vector = merge([user_latent, item_latent], mode = 'mul')        # Final prediction layer    #prediction = Lambda(lambda x: K.sigmoid(K.sum(x)), output_shape=(1,))(predict_vector)    prediction = Dense(1, activation='sigmoid', init='lecun_uniform', name = 'prediction')(predict_vector)        model = Model(input=[user_input, item_input],                 output=prediction)    return model 
开发者ID:hexiangnan,项目名称:neural_collaborative_filtering,代码行数:27,代码来源:GMF.py


示例12: fasttext_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Embedding [as 别名]def fasttext_model(max_len=300,                   vocabulary_size=20000,                   embedding_dim=128,                   num_classes=4):    model = Sequential()    # embed layer by maps vocab index into emb dimensions    model.add(Embedding(input_dim=vocabulary_size, output_dim=embedding_dim, input_length=max_len))    # pooling the embedding    model.add(GlobalAveragePooling1D())    # output multi classification of num_classes    model.add(Dense(num_classes, activation='softmax'))    model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])    model.summary()    return model 
开发者ID:shibing624,项目名称:text-classifier,代码行数:18,代码来源:deep_model.py


示例13: get_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Embedding [as 别名]def get_model(num_users, num_items, latent_dim, regs=[0,0]):    user_input = Input(shape=(1,), dtype='int32', name='user_input')    item_input = Input(shape=(1,), dtype='int32', name='item_input')        MF_Embedding_User = Embedding(input_dim=num_users, output_dim=latent_dim, name='user_embedding',                                  embeddings_regularizer = l2(regs[0]), input_length=1)    MF_Embedding_Item = Embedding(input_dim=num_items, output_dim=latent_dim, name='item_embedding',                                  embeddings_regularizer = l2(regs[1]), input_length=1)        user_latent = Flatten()(MF_Embedding_User(user_input))    item_latent = Flatten()(MF_Embedding_Item(item_input))        predict_vector = Multiply()([user_latent, item_latent])    prediction = Dense(1, activation='sigmoid', kernel_initializer='lecun_uniform', name = 'prediction')(predict_vector)    model = Model(inputs=[user_input, item_input], outputs=prediction)        return model 
开发者ID:wyl6,项目名称:Recommender-Systems-Samples,代码行数:19,代码来源:GMF.py


示例14: __build_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Embedding [as 别名]def __build_model(self):        model = Sequential()        embedding_layer = Embedding(input_dim=len(self.vocab) + 1,                                    output_dim=self.embedding_dim,                                    weights=[self.embedding_mat],                                    trainable=False)        model.add(embedding_layer)        bilstm_layer = Bidirectional(LSTM(units=256, return_sequences=True))        model.add(bilstm_layer)        model.add(TimeDistributed(Dense(256, activation="relu")))        crf_layer = CRF(units=len(self.tags), sparse_target=True)        model.add(crf_layer)        model.compile(optimizer="adam", loss=crf_loss, metrics=[crf_viterbi_accuracy])        model.summary()        return model 
开发者ID:fordai,项目名称:CCKS2019-Chinese-Clinical-NER,代码行数:23,代码来源:model.py


示例15: CapsuleNet

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Embedding [as 别名]def CapsuleNet(n_capsule = 10, n_routings = 5, capsule_dim = 16,     n_recurrent=100, dropout_rate=0.2, l2_penalty=0.0001):    K.clear_session()    inputs = Input(shape=(170,))    x = Embedding(21099, 300,  trainable=True)(inputs)            x = SpatialDropout1D(dropout_rate)(x)    x = Bidirectional(        CuDNNGRU(n_recurrent, return_sequences=True,                 kernel_regularizer=l2(l2_penalty),                 recurrent_regularizer=l2(l2_penalty)))(x)    x = PReLU()(x)    x = Capsule(        num_capsule=n_capsule, dim_capsule=capsule_dim,        routings=n_routings, share_weights=True)(x)    x = Flatten(name = 'concatenate')(x)    x = Dropout(dropout_rate)(x)#     fc = Dense(128, activation='sigmoid')(x)    outputs = Dense(6, activation='softmax')(x)    model = Model(inputs=inputs, outputs=outputs)    model.compile(loss='categorical_crossentropy', optimizer='nadam', metrics=['accuracy'])    return model 
开发者ID:WeavingWong,项目名称:DigiX_HuaWei_Population_Age_Attribution_Predict,代码行数:24,代码来源:models.py


示例16: CapsuleNet_v2

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Embedding [as 别名]def CapsuleNet_v2(n_capsule = 10, n_routings = 5, capsule_dim = 16,     n_recurrent=100, dropout_rate=0.2, l2_penalty=0.0001):    K.clear_session()    inputs = Input(shape=(200,))    x = Embedding(20000, 300,  trainable=True)(inputs)            x = SpatialDropout1D(dropout_rate)(x)    x = Bidirectional(        CuDNNGRU(n_recurrent, return_sequences=True,                 kernel_regularizer=l2(l2_penalty),                 recurrent_regularizer=l2(l2_penalty)))(x)    x = PReLU()(x)    x = Capsule(        num_capsule=n_capsule, dim_capsule=capsule_dim,        routings=n_routings, share_weights=True)(x)    x = Flatten(name = 'concatenate')(x)    x = Dropout(dropout_rate)(x)#     fc = Dense(128, activation='sigmoid')(x)    outputs = Dense(6, activation='softmax')(x)    model = Model(inputs=inputs, outputs=outputs)    model.compile(loss='categorical_crossentropy', optimizer='nadam', metrics=['accuracy'])    return model 
开发者ID:WeavingWong,项目名称:DigiX_HuaWei_Population_Age_Attribution_Predict,代码行数:24,代码来源:models.py


示例17: model_keras

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Embedding [as 别名]def model_keras(num_words=3000, num_units=128):    '''    生成RNN模型    :param num_words:词汇数量    :param num_units:词向量维度,lstm神经元数量默认一样    :return:    '''    data_input = Input(shape=[None])    embedding = Embedding(input_dim=num_words, output_dim=num_units, mask_zero=True)(data_input)    lstm = LSTM(units=num_units, return_sequences=True)(embedding)    x = LSTM(units=num_units, return_sequences=True)(lstm)    # keras好像不支持内部对y操作,不能像tensorflow那样用reshape    # x = Reshape(target_shape=[-1, num_units])(x)    outputs = Dense(units=num_words, activation='softmax')(x)    model = Model(inputs=data_input, outputs=outputs)    model.compile(loss='sparse_categorical_crossentropy',                  optimizer=optimizers.adam(lr=0.01),                  metrics=['accuracy'])    return model 
开发者ID:renjunxiang,项目名称:Text_Generate,代码行数:22,代码来源:model_keras.py


示例18: test_tiny_concat_seq_random

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Embedding [as 别名]def test_tiny_concat_seq_random(self):        np.random.seed(1988)        max_features = 10        embedding_dims = 4        seq_len = 5        num_channels = 6        # Define a model        input_tensor = Input(shape=(seq_len,))        x1 = Embedding(max_features, embedding_dims)(input_tensor)        x2 = Embedding(max_features, embedding_dims)(input_tensor)        x3 = concatenate([x1, x2], axis=1)        model = Model(inputs=[input_tensor], outputs=[x3])        # Set some random weights        model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])        # Get the coreml model        self._test_model(model, one_dim_seq_flags=[True]) 
开发者ID:apple,项目名称:coremltools,代码行数:22,代码来源:test_keras2_numeric.py


示例19: test_conv_batch_1d

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Embedding [as 别名]def test_conv_batch_1d(self):        np.random.seed(1988)        vocabulary_size = 4        embedding_dimension = 6        input_length = 10        model = Sequential()        model.add(            Embedding(                vocabulary_size,                embedding_dimension,                input_length=input_length,                trainable=True,            )        )        model.add(Conv1D(5, 2))        model.add(BatchNormalization())        model.add(Activation("relu"))        model.add(MaxPooling1D(2))        model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])        self._test_model(model, one_dim_seq_flags=[True]) 
开发者ID:apple,项目名称:coremltools,代码行数:26,代码来源:test_keras2_numeric.py


示例20: test_tiny_image_captioning_feature_merge

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Embedding [as 别名]def test_tiny_image_captioning_feature_merge(self):        img_input_1 = Input(shape=(16, 16, 3))        x = Conv2D(2, (3, 3))(img_input_1)        x = Flatten()(x)        img_model = Model([img_input_1], [x])        img_input = Input(shape=(16, 16, 3))        x = img_model(img_input)        x = Dense(8, name="cap_dense")(x)        x = Reshape((1, 8), name="cap_reshape")(x)        sentence_input = Input(shape=(5,))  # max_length = 5        y = Embedding(8, 8, name="cap_embedding")(sentence_input)        z = concatenate([x, y], axis=1, name="cap_merge")        combined_model = Model(inputs=[img_input, sentence_input], outputs=[z])        self._test_model(combined_model, one_dim_seq_flags=[False, True]) 
开发者ID:apple,项目名称:coremltools,代码行数:20,代码来源:test_keras2_numeric.py


示例21: test_tiny_image_captioning

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Embedding [as 别名]def test_tiny_image_captioning(self):        # use a conv layer as a image feature branch        img_input_1 = Input(shape=(16, 16, 3))        x = Conv2D(2, (3, 3))(img_input_1)        x = Flatten()(x)        img_model = Model(inputs=[img_input_1], outputs=[x])        img_input = Input(shape=(16, 16, 3))        x = img_model(img_input)        x = Dense(8, name="cap_dense")(x)        x = Reshape((1, 8), name="cap_reshape")(x)        sentence_input = Input(shape=(5,))  # max_length = 5        y = Embedding(8, 8, name="cap_embedding")(sentence_input)        z = concatenate([x, y], axis=1, name="cap_merge")        z = LSTM(4, return_sequences=True, name="cap_lstm")(z)        z = TimeDistributed(Dense(8), name="cap_timedistributed")(z)        combined_model = Model(inputs=[img_input, sentence_input], outputs=[z])        self._test_model(combined_model, one_dim_seq_flags=[False, True]) 
开发者ID:apple,项目名称:coremltools,代码行数:22,代码来源:test_keras2_numeric.py


示例22: AlternativeRNNModel

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Embedding [as 别名]def AlternativeRNNModel(vocab_size, max_len, rnnConfig, model_type):	embedding_size = rnnConfig['embedding_size']	if model_type == 'inceptionv3':		# InceptionV3 outputs a 2048 dimensional vector for each image, which we'll feed to RNN Model		image_input = Input(shape=(2048,))	elif model_type == 'vgg16':		# VGG16 outputs a 4096 dimensional vector for each image, which we'll feed to RNN Model		image_input = Input(shape=(4096,))	image_model_1 = Dense(embedding_size, activation='relu')(image_input)	image_model = RepeatVector(max_len)(image_model_1)	caption_input = Input(shape=(max_len,))	# mask_zero: We zero pad inputs to the same length, the zero mask ignores those inputs. E.g. it is an efficiency.	caption_model_1 = Embedding(vocab_size, embedding_size, mask_zero=True)(caption_input)	# Since we are going to predict the next word using the previous words	# (length of previous words changes with every iteration over the caption), we have to set return_sequences = True.	caption_model_2 = LSTM(rnnConfig['LSTM_units'], return_sequences=True)(caption_model_1)	# caption_model = TimeDistributed(Dense(embedding_size, activation='relu'))(caption_model_2)	caption_model = TimeDistributed(Dense(embedding_size))(caption_model_2)	# Merging the models and creating a softmax classifier	final_model_1 = concatenate([image_model, caption_model])	# final_model_2 = LSTM(rnnConfig['LSTM_units'], return_sequences=False)(final_model_1)	final_model_2 = Bidirectional(LSTM(rnnConfig['LSTM_units'], return_sequences=False))(final_model_1)	# final_model_3 = Dense(rnnConfig['dense_units'], activation='relu')(final_model_2)	# final_model = Dense(vocab_size, activation='softmax')(final_model_3)	final_model = Dense(vocab_size, activation='softmax')(final_model_2)	model = Model(inputs=[image_input, caption_input], outputs=final_model)	model.compile(loss='categorical_crossentropy', optimizer='adam')	# model.compile(loss='categorical_crossentropy', optimizer='rmsprop')	return model 
开发者ID:dabasajay,项目名称:Image-Caption-Generator,代码行数:34,代码来源:model.py


示例23: _get_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Embedding [as 别名]def _get_model(X, cat_cols, num_cols, n_uniq, n_emb, output_activation):        inputs = []        num_inputs = []        embeddings = []        for i, col in enumerate(cat_cols):            if not n_uniq[i]:                n_uniq[i] = X[col].nunique()            if not n_emb[i]:                n_emb[i] = max(MIN_EMBEDDING, 2 * int(np.log2(n_uniq[i])))            _input = Input(shape=(1,), name=col)            _embed = Embedding(input_dim=n_uniq[i], output_dim=n_emb[i], name=col + EMBEDDING_SUFFIX)(_input)            _embed = Dropout(.2)(_embed)            _embed = Reshape((n_emb[i],))(_embed)            inputs.append(_input)            embeddings.append(_embed)        if num_cols:            num_inputs = Input(shape=(len(num_cols),), name='num_inputs')            merged_input = Concatenate(axis=1)(embeddings + [num_inputs])            inputs = inputs + [num_inputs]        else:            merged_input = Concatenate(axis=1)(embeddings)        x = BatchNormalization()(merged_input)        x = Dense(128, activation='relu')(x)        x = Dropout(.5)(x)        x = BatchNormalization()(x)        x = Dense(64, activation='relu')(x)        x = Dropout(.5)(x)        x = BatchNormalization()(x)        output = Dense(1, activation=output_activation)(x)        model = Model(inputs=inputs, outputs=output)        return model, n_emb, n_uniq 
开发者ID:jeongyoonlee,项目名称:Kaggler,代码行数:41,代码来源:categorical.py


示例24: build_generator

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Embedding [as 别名]def build_generator(self):        model = Sequential()        model.add(Dense(256, input_dim=self.latent_dim))        model.add(LeakyReLU(alpha=0.2))        model.add(BatchNormalization(momentum=0.8))        model.add(Dense(512))        model.add(LeakyReLU(alpha=0.2))        model.add(BatchNormalization(momentum=0.8))        model.add(Dense(1024))        model.add(LeakyReLU(alpha=0.2))        model.add(BatchNormalization(momentum=0.8))        model.add(Dense(np.prod(self.img_shape), activation='tanh'))        model.add(Reshape(self.img_shape))        model.summary()        noise = Input(shape=(self.latent_dim,))        label = Input(shape=(1,), dtype='int32')        label_embedding = Flatten()(Embedding(self.num_classes, self.latent_dim)(label))        model_input = multiply([noise, label_embedding])        img = model(model_input)        return Model([noise, label], img) 
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:28,代码来源:cgan.py


示例25: build_discriminator

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Embedding [as 别名]def build_discriminator(self):        model = Sequential()        model.add(Dense(512, input_dim=np.prod(self.img_shape)))        model.add(LeakyReLU(alpha=0.2))        model.add(Dense(512))        model.add(LeakyReLU(alpha=0.2))        model.add(Dropout(0.4))        model.add(Dense(512))        model.add(LeakyReLU(alpha=0.2))        model.add(Dropout(0.4))        model.add(Dense(1, activation='sigmoid'))        model.summary()        img = Input(shape=self.img_shape)        label = Input(shape=(1,), dtype='int32')        label_embedding = Flatten()(Embedding(self.num_classes, np.prod(self.img_shape))(label))        flat_img = Flatten()(img)        model_input = multiply([flat_img, label_embedding])        validity = model(model_input)        return Model([img, label], validity) 
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:28,代码来源:cgan.py


示例26: build_generator

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Embedding [as 别名]def build_generator(self):        model = Sequential()        model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim))        model.add(Reshape((7, 7, 128)))        model.add(BatchNormalization(momentum=0.8))        model.add(UpSampling2D())        model.add(Conv2D(128, kernel_size=3, padding="same"))        model.add(Activation("relu"))        model.add(BatchNormalization(momentum=0.8))        model.add(UpSampling2D())        model.add(Conv2D(64, kernel_size=3, padding="same"))        model.add(Activation("relu"))        model.add(BatchNormalization(momentum=0.8))        model.add(Conv2D(self.channels, kernel_size=3, padding='same'))        model.add(Activation("tanh"))        model.summary()        noise = Input(shape=(self.latent_dim,))        label = Input(shape=(1,), dtype='int32')        label_embedding = Flatten()(Embedding(self.num_classes, self.latent_dim)(label))        model_input = multiply([noise, label_embedding])        img = model(model_input)        return Model([noise, label], img) 
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:30,代码来源:acgan.py


示例27: buildModel_RNN

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Embedding [as 别名]def buildModel_RNN(word_index, embeddings_index, nClasses, MAX_SEQUENCE_LENGTH, EMBEDDING_DIM):    '''    def buildModel_RNN(word_index, embeddings_index, nClasses, MAX_SEQUENCE_LENGTH, EMBEDDING_DIM):    word_index in word index ,     embeddings_index is embeddings index, look at data_helper.py     nClasses is number of classes,     MAX_SEQUENCE_LENGTH is maximum lenght of text sequences,     EMBEDDING_DIM is an int value for dimention of word embedding look at data_helper.py     output: RNN model    '''    model = Sequential()    embedding_matrix = np.random.random((len(word_index) + 1, EMBEDDING_DIM))    for word, i in word_index.items():        embedding_vector = embeddings_index.get(word)        if embedding_vector is not None:            # words not found in embedding index will be all-zeros.            embedding_matrix[i] = embedding_vector    model.add(Embedding(len(word_index) + 1,                                EMBEDDING_DIM,                                weights=[embedding_matrix],                                input_length=MAX_SEQUENCE_LENGTH,                                trainable=True))    model.add(GRU(100,dropout=0.2, recurrent_dropout=0.2))    model.add(Dense(nClasses, activation='softmax'))    model.compile(loss='sparse_categorical_crossentropy',                  optimizer='rmsprop',                  metrics=['acc'])    return model 
开发者ID:kk7nc,项目名称:HDLTex,代码行数:30,代码来源:BuildModel.py


示例28: word2vec_embedding_layer

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Embedding [as 别名]def word2vec_embedding_layer(embedding_matrix,train=False):    layer = Embedding(input_dim=embedding_matrix.shape[0], output_dim=embedding_matrix.shape[1], weights=[embedding_matrix],trainable=train)    return layer 
开发者ID:GauravBh1010tt,项目名称:DeepLearn,代码行数:5,代码来源:dl.py


示例29: word2vec_embedding_layer

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Embedding [as 别名]def word2vec_embedding_layer(embedding_matrix):    #weights = np.load('Word2Vec_QA.syn0.npy')    layer = Embedding(input_dim=embedding_matrix.shape[0], output_dim=embedding_matrix.shape[1], weights=[embedding_matrix])    return layer 
开发者ID:GauravBh1010tt,项目名称:DeepLearn,代码行数:6,代码来源:p3_cnn.py


万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。