您当前的位置:首页 > IT编程 > Keras
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Python layers.TimeDistributed方法代码示例

51自学网 2020-12-01 11:08:49
  Keras
这篇教程Python layers.TimeDistributed方法代码示例写得很实用,希望能帮到您。

本文整理汇总了Python中keras.layers.TimeDistributed方法的典型用法代码示例。如果您正苦于以下问题:Python layers.TimeDistributed方法的具体用法?Python layers.TimeDistributed怎么用?Python layers.TimeDistributed使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.layers的用法示例。

在下文中一共展示了layers.TimeDistributed方法的25个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: create_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import TimeDistributed [as 别名]def create_model():    inputs = Input(shape=(length,), dtype='int32', name='inputs')    embedding_1 = Embedding(len(vocab), EMBED_DIM, input_length=length, mask_zero=True)(inputs)    bilstm = Bidirectional(LSTM(EMBED_DIM // 2, return_sequences=True))(embedding_1)    bilstm_dropout = Dropout(DROPOUT_RATE)(bilstm)    embedding_2 = Embedding(len(vocab), EMBED_DIM, input_length=length)(inputs)    con = Conv1D(filters=FILTERS, kernel_size=2 * HALF_WIN_SIZE + 1, padding='same')(embedding_2)    con_d = Dropout(DROPOUT_RATE)(con)    dense_con = TimeDistributed(Dense(DENSE_DIM))(con_d)    rnn_cnn = concatenate([bilstm_dropout, dense_con], axis=2)    dense = TimeDistributed(Dense(len(chunk_tags)))(rnn_cnn)    crf = CRF(len(chunk_tags), sparse_target=True)    crf_output = crf(dense)    model = Model(input=[inputs], output=[crf_output])    model.compile(loss=crf.loss_function, optimizer=Adam(), metrics=[crf.accuracy])    return model 
开发者ID:jtyoui,项目名称:Jtyoui,代码行数:18,代码来源:cnn_rnn_crf.py


示例2: get_audio_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import TimeDistributed [as 别名]def get_audio_model(self):		# Modality specific hyperparameters		self.epochs = 100		self.batch_size = 50		# Modality specific parameters		self.embedding_dim = self.train_x.shape[2]		print("Creating Model...")				inputs = Input(shape=(self.sequence_length, self.embedding_dim), dtype='float32')		masked = Masking(mask_value =0)(inputs)		lstm = Bidirectional(LSTM(300, activation='tanh', return_sequences = True, dropout=0.4))(masked)		lstm = Bidirectional(LSTM(300, activation='tanh', return_sequences = True, dropout=0.4), name="utter")(lstm)		output = TimeDistributed(Dense(self.classes,activation='softmax'))(lstm)		model = Model(inputs, output)		return model 
开发者ID:declare-lab,项目名称:MELD,代码行数:21,代码来源:baseline.py


示例3: get_bimodal_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import TimeDistributed [as 别名]def get_bimodal_model(self):		# Modality specific hyperparameters		self.epochs = 100		self.batch_size = 10		# Modality specific parameters		self.embedding_dim = self.train_x.shape[2]		print("Creating Model...")				inputs = Input(shape=(self.sequence_length, self.embedding_dim), dtype='float32')		masked = Masking(mask_value =0)(inputs)		lstm = Bidirectional(LSTM(300, activation='tanh', return_sequences = True, dropout=0.4), name="utter")(masked)		output = TimeDistributed(Dense(self.classes,activation='softmax'))(lstm)		model = Model(inputs, output)		return model 
开发者ID:declare-lab,项目名称:MELD,代码行数:20,代码来源:baseline.py


示例4: classifier

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import TimeDistributed [as 别名]def classifier(base_layers, input_rois, num_rois, nb_classes = 21, trainable=False):    # compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround    if K.backend() == 'tensorflow':        pooling_regions = 7        input_shape = (num_rois,7,7,512)    elif K.backend() == 'theano':        pooling_regions = 7        input_shape = (num_rois,512,7,7)    out_roi_pool = RoiPoolingConv(pooling_regions, num_rois)([base_layers, input_rois])    out = TimeDistributed(Flatten(name='flatten'))(out_roi_pool)    out = TimeDistributed(Dense(4096, activation='relu', name='fc1'))(out)    out = TimeDistributed(Dropout(0.5))(out)    out = TimeDistributed(Dense(4096, activation='relu', name='fc2'))(out)    out = TimeDistributed(Dropout(0.5))(out)    out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero'), name='dense_class_{}'.format(nb_classes))(out)    # note: no regression target for bg class    out_regr = TimeDistributed(Dense(4 * (nb_classes-1), activation='linear', kernel_initializer='zero'), name='dense_regress_{}'.format(nb_classes))(out)    return [out_class, out_regr] 
开发者ID:kbardool,项目名称:keras-frcnn,代码行数:26,代码来源:vgg.py


示例5: __build_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import TimeDistributed [as 别名]def __build_model(self):        model = Sequential()        embedding_layer = Embedding(input_dim=len(self.vocab) + 1,                                    output_dim=self.embedding_dim,                                    weights=[self.embedding_mat],                                    trainable=False)        model.add(embedding_layer)        bilstm_layer = Bidirectional(LSTM(units=256, return_sequences=True))        model.add(bilstm_layer)        model.add(TimeDistributed(Dense(256, activation="relu")))        crf_layer = CRF(units=len(self.tags), sparse_target=True)        model.add(crf_layer)        model.compile(optimizer="adam", loss=crf_loss, metrics=[crf_viterbi_accuracy])        model.summary()        return model 
开发者ID:fordai,项目名称:CCKS2019-Chinese-Clinical-NER,代码行数:23,代码来源:model.py


示例6: classifier

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import TimeDistributed [as 别名]def classifier(base_layers, input_rois, num_rois, nb_classes=21, trainable=False):    # compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround    if K.backend() == 'tensorflow':        pooling_regions = 14        # Changed the input shape to 1088 from 1024 because of nn_base's output being 1088. Not sure if this is correct        input_shape = (num_rois, 14, 14, 1088)    elif K.backend() == 'theano':        pooling_regions = 7        input_shape = (num_rois, 1024, 7, 7)    out_roi_pool = RoiPoolingConv(pooling_regions, num_rois)([base_layers, input_rois])    out = classifier_layers(out_roi_pool, input_shape=input_shape, trainable=True)    out = TimeDistributed(Flatten())(out)    out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero'), name='dense_class_{}'.format(nb_classes))(out)    # note: no regression target for bg class    out_regr = TimeDistributed(Dense(4 * (nb_classes-1), activation='linear', kernel_initializer='zero'), name='dense_regress_{}'.format(nb_classes))(out)    return [out_class, out_regr] 
开发者ID:you359,项目名称:Keras-FasterRCNN,代码行数:23,代码来源:inception_resnet_v2.py


示例7: classifier

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import TimeDistributed [as 别名]def classifier(base_layers, input_rois, num_rois, nb_classes = 21, trainable=False):    # compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround    if K.backend() == 'tensorflow':        pooling_regions = 7        input_shape = (num_rois, 7, 7, 512)    elif K.backend() == 'theano':        pooling_regions = 7        input_shape = (num_rois, 512, 7, 7)    out_roi_pool = RoiPoolingConv(pooling_regions, num_rois)([base_layers, input_rois])    out = TimeDistributed(Flatten(name='flatten'))(out_roi_pool)    out = TimeDistributed(Dense(4096, activation='relu', name='fc1'))(out)    out = TimeDistributed(Dense(4096, activation='relu', name='fc2'))(out)    out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero'), name='dense_class_{}'.format(nb_classes))(out)    # note: no regression target for bg class    out_regr = TimeDistributed(Dense(4 * (nb_classes-1), activation='linear', kernel_initializer='zero'), name='dense_regress_{}'.format(nb_classes))(out)    return [out_class, out_regr] 
开发者ID:you359,项目名称:Keras-FasterRCNN,代码行数:24,代码来源:vgg.py


示例8: classifier_layers

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import TimeDistributed [as 别名]def classifier_layers(x, input_shape, trainable=False):    # compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround    # (hence a smaller stride in the region that follows the ROI pool)    x = TimeDistributed(SeparableConv2D(1536, (3, 3),                                        padding='same',                                        use_bias=False),                        name='block14_sepconv1')(x)    x = TimeDistributed(BatchNormalization(), name='block14_sepconv1_bn')(x)    x = Activation('relu', name='block14_sepconv1_act')(x)    x = TimeDistributed(SeparableConv2D(2048, (3, 3),                                        padding='same',                                        use_bias=False),                        name='block14_sepconv2')(x)    x = TimeDistributed(BatchNormalization(), name='block14_sepconv2_bn')(x)    x = Activation('relu', name='block14_sepconv2_act')(x)    TimeDistributed(GlobalAveragePooling2D(), name='avg_pool')(x)    return x 
开发者ID:you359,项目名称:Keras-FasterRCNN,代码行数:23,代码来源:xception.py


示例9: classifier

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import TimeDistributed [as 别名]def classifier(base_layers, input_rois, num_rois, nb_classes,trainable=True):    """    The final classifier to match original implementation for VGG-16    The only difference being the Roipooling layer uses tensorflow's bilinear interpolation    """        pooling_regions = 7    out_roi_pool = RoiPoolingConv(pooling_regions, num_rois,trainable=trainable)([base_layers, input_rois])    out = TimeDistributed(Flatten(),name="flatten",trainable=trainable)(out_roi_pool)    out = TimeDistributed(Dense(4096, activation='relu',trainable=trainable),name="fc1",trainable=trainable)(out)    out = TimeDistributed(Dropout(0.5),name="drop_out1",trainable=trainable)(out) # add dropout to match original implememtation    out = TimeDistributed(Dense(4096, activation='relu',trainable=trainable),name="fc2",trainable=trainable)(out)    out = TimeDistributed(Dropout(0.5),name="drop_out2",trainable=trainable)(out) # add dropout to match original implementation    out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero',trainable=trainable), name='dense_class_{}'.format(nb_classes),trainable=trainable)(out)    # note: no regression target for bg class    out_regr = TimeDistributed(Dense(4 * (nb_classes-1), activation='linear', kernel_initializer='zero',trainable=trainable), name='dense_regress_{}'.format(nb_classes),trainable=trainable)(out)    return [out_class, out_regr] 
开发者ID:Abhijit-2592,项目名称:Keras_object_detection,代码行数:22,代码来源:nn_arch_vgg16.py


示例10: create_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import TimeDistributed [as 别名]def create_model(maxlen, chars, word_size, infer=False):    """    :param infer:    :param maxlen:    :param chars:    :param word_size:    :return:    """    sequence = Input(shape=(maxlen,), dtype='int32')    embedded = Embedding(len(chars) + 1, word_size, input_length=maxlen, mask_zero=True)(sequence)    blstm = Bidirectional(LSTM(64, return_sequences=True), merge_mode='sum')(embedded)    output = TimeDistributed(Dense(5, activation='softmax'))(blstm)    model = Model(input=sequence, output=output)    if not infer:        model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])    return model 
开发者ID:stephen-v,项目名称:zh-segmentation-keras,代码行数:19,代码来源:lstm_model.py


示例11: create_lstm

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import TimeDistributed [as 别名]def create_lstm(hidden_units=[50], dropout=0.05, bidirectional=True):    model = Sequential()    if bidirectional:        i = 0        for unit in hidden_units:            if i == 0:                model.add(Bidirectional(LSTM(unit, dropout=dropout, return_sequences=True), input_shape=(None, config.N_MELS)))            else:                model.add(Bidirectional(LSTM(unit, dropout=dropout, return_sequences=True)))            i += 1    else:        i = 0        for unit in hidden_units:            if i == 0:                model.add(LSTM(unit, dropout=dropout, return_sequences=True), input_shape=(None, config.N_MELS))            else:                model.add(LSTM(unit, dropout=dropout, return_sequences=True))            i += 1    model.add(TimeDistributed(Dense(config.CLASSES, activation='sigmoid')))    return model 
开发者ID:qlemaire22,项目名称:speech-music-detection,代码行数:25,代码来源:lstm.py


示例12: AlternativeRNNModel

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import TimeDistributed [as 别名]def AlternativeRNNModel(vocab_size, max_len, rnnConfig, model_type):	embedding_size = rnnConfig['embedding_size']	if model_type == 'inceptionv3':		# InceptionV3 outputs a 2048 dimensional vector for each image, which we'll feed to RNN Model		image_input = Input(shape=(2048,))	elif model_type == 'vgg16':		# VGG16 outputs a 4096 dimensional vector for each image, which we'll feed to RNN Model		image_input = Input(shape=(4096,))	image_model_1 = Dense(embedding_size, activation='relu')(image_input)	image_model = RepeatVector(max_len)(image_model_1)	caption_input = Input(shape=(max_len,))	# mask_zero: We zero pad inputs to the same length, the zero mask ignores those inputs. E.g. it is an efficiency.	caption_model_1 = Embedding(vocab_size, embedding_size, mask_zero=True)(caption_input)	# Since we are going to predict the next word using the previous words	# (length of previous words changes with every iteration over the caption), we have to set return_sequences = True.	caption_model_2 = LSTM(rnnConfig['LSTM_units'], return_sequences=True)(caption_model_1)	# caption_model = TimeDistributed(Dense(embedding_size, activation='relu'))(caption_model_2)	caption_model = TimeDistributed(Dense(embedding_size))(caption_model_2)	# Merging the models and creating a softmax classifier	final_model_1 = concatenate([image_model, caption_model])	# final_model_2 = LSTM(rnnConfig['LSTM_units'], return_sequences=False)(final_model_1)	final_model_2 = Bidirectional(LSTM(rnnConfig['LSTM_units'], return_sequences=False))(final_model_1)	# final_model_3 = Dense(rnnConfig['dense_units'], activation='relu')(final_model_2)	# final_model = Dense(vocab_size, activation='softmax')(final_model_3)	final_model = Dense(vocab_size, activation='softmax')(final_model_2)	model = Model(inputs=[image_input, caption_input], outputs=final_model)	model.compile(loss='categorical_crossentropy', optimizer='adam')	# model.compile(loss='categorical_crossentropy', optimizer='rmsprop')	return model 
开发者ID:dabasajay,项目名称:Image-Caption-Generator,代码行数:34,代码来源:model.py


示例13: build

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import TimeDistributed [as 别名]def build(self, input_shape):        self._validate_input_shape(input_shape)                d_k = self._d_k if self._d_k else input_shape[1][-1]        d_model = self._d_model if self._d_model else input_shape[1][-1]        d_v = self._d_v        if type(d_k) == tf.Dimension:            d_k = d_k.value        if type(d_model) == tf.Dimension:            d_model = d_model.value                self._q_layers = []        self._k_layers = []        self._v_layers = []        self._sdp_layer = ScaledDotProductAttention(return_attention=self._return_attention)            for _ in range(self._h):            self._q_layers.append(                TimeDistributed(                    Dense(d_k, activation=self._activation, use_bias=False)                )            )            self._k_layers.append(                TimeDistributed(                    Dense(d_k, activation=self._activation, use_bias=False)                )            )            self._v_layers.append(                TimeDistributed(                    Dense(d_v, activation=self._activation, use_bias=False)                )            )                self._output = TimeDistributed(Dense(d_model))        #if self._return_attention:        #    self._output = Concatenate() 
开发者ID:zimmerrol,项目名称:keras-utility-layer-collection,代码行数:39,代码来源:attention.py


示例14: creat_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import TimeDistributed [as 别名]def creat_model(input_shape, num_class):    init = initializers.Orthogonal(gain=args.norm)    sequence_input =Input(shape=input_shape)    mask = Masking(mask_value=0.)(sequence_input)    if args.aug:        mask = augmentaion()(mask)    X = Noise(0.075)(mask)    if args.model[0:2]=='VA':        # VA        trans = LSTM(args.nhid,recurrent_activation='sigmoid',return_sequences=True,implementation=2,recurrent_initializer=init)(X)        trans = Dropout(0.5)(trans)        trans = TimeDistributed(Dense(3,kernel_initializer='zeros'))(trans)        rot = LSTM(args.nhid,recurrent_activation='sigmoid',return_sequences=True,implementation=2,recurrent_initializer=init)(X)        rot = Dropout(0.5)(rot)        rot = TimeDistributed(Dense(3,kernel_initializer='zeros'))(rot)        transform = Concatenate()([rot,trans])        X = VA()([mask,transform])    X = LSTM(args.nhid,recurrent_activation='sigmoid',return_sequences=True,implementation=2,recurrent_initializer=init)(X)    X = Dropout(0.5)(X)    X = LSTM(args.nhid,recurrent_activation='sigmoid',return_sequences=True,implementation=2,recurrent_initializer=init)(X)    X = Dropout(0.5)(X)    X = LSTM(args.nhid,recurrent_activation='sigmoid',return_sequences=True,implementation=2,recurrent_initializer=init)(X)    X = Dropout(0.5)(X)    X = TimeDistributed(Dense(num_class))(X)    X = MeanOverTime()(X)    X = Activation('softmax')(X)    model=Model(sequence_input,X)    return model 
开发者ID:microsoft,项目名称:View-Adaptive-Neural-Networks-for-Skeleton-based-Human-Action-Recognition,代码行数:33,代码来源:va-rnn.py


示例15: set_trainable

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import TimeDistributed [as 别名]def set_trainable(self, layer_regex, keras_model=None, indent=0, verbose=1):        """Sets model layers as trainable if their names match        the given regular expression.        """        # Print message on the first call (but not on recursive calls)        if verbose > 0 and keras_model is None:            log("Selecting layers to train")        keras_model = keras_model or self.keras_model        # In multi-GPU training, we wrap the model. Get layers        # of the inner model because they have the weights.        layers = keras_model.inner_model.layers if hasattr(keras_model, "inner_model")/            else keras_model.layers        for layer in layers:            # Is the layer a model?            if layer.__class__.__name__ == 'Model':                print("In model: ", layer.name)                self.set_trainable(                    layer_regex, keras_model=layer, indent=indent + 4)                continue            if not layer.weights:                continue            # Is it trainable?            trainable = bool(re.fullmatch(layer_regex, layer.name))            # Update layer. If layer is a container, update inner layer.            if layer.__class__.__name__ == 'TimeDistributed':                layer.layer.trainable = trainable            else:                layer.trainable = trainable            # Print trainable layer names            if trainable and verbose > 0:                log("{}{:20}   ({})".format(" " * indent, layer.name,                                            layer.__class__.__name__)) 
开发者ID:dataiku,项目名称:dataiku-contrib,代码行数:38,代码来源:model.py


示例16: find_trainable_layer

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import TimeDistributed [as 别名]def find_trainable_layer(self, layer):        """If a layer is encapsulated by another layer, this function        digs through the encapsulation and returns the layer that holds        the weights.        """        if layer.__class__.__name__ == 'TimeDistributed':            return self.find_trainable_layer(layer.layer)        return layer 
开发者ID:dataiku,项目名称:dataiku-contrib,代码行数:10,代码来源:model.py


示例17: ctpn

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import TimeDistributed [as 别名]def ctpn(base_features, num_anchors, rnn_units=128, fc_units=512):    """    ctpn网络    :param base_features: (B,H,W,C)    :param num_anchors: anchors个数    :param rnn_units:    :param fc_units:    :return:    """    x = layers.Conv2D(512, kernel_size=(3, 3), padding='same', name='pre_fc')(base_features)  # [B,H,W,512]    # 沿着宽度方式做rnn    rnn_forward = layers.TimeDistributed(layers.GRU(rnn_units, return_sequences=True, kernel_initializer='he_normal'),                                         name='gru_forward')(x)    rnn_backward = layers.TimeDistributed(        layers.GRU(rnn_units, return_sequences=True, kernel_initializer='he_normal', go_backwards=True),        name='gru_backward')(x)    rnn_output = layers.Concatenate(name='gru_concat')([rnn_forward, rnn_backward])  # (B,H,W,256)    # conv实现fc    fc_output = layers.Conv2D(fc_units, kernel_size=(1, 1), activation='relu', name='fc_output')(        rnn_output)  # (B,H,W,512)    # 分类    class_logits = layers.Conv2D(2 * num_anchors, kernel_size=(1, 1), name='cls')(fc_output)    class_logits = layers.Reshape(target_shape=(-1, 2), name='cls_reshape')(class_logits)    # 中心点垂直坐标和高度回归    predict_deltas = layers.Conv2D(2 * num_anchors, kernel_size=(1, 1), name='deltas')(fc_output)    predict_deltas = layers.Reshape(target_shape=(-1, 2), name='deltas_reshape')(predict_deltas)    # 侧边精调(只需要预测x偏移即可)    predict_side_deltas = layers.Conv2D(num_anchors, kernel_size=(1, 1), name='side_deltas')(fc_output)    predict_side_deltas = layers.Reshape(target_shape=(-1, 1), name='side_deltas_reshape')(        predict_side_deltas)    return class_logits, predict_deltas, predict_side_deltas 
开发者ID:yizt,项目名称:keras-ctpn,代码行数:36,代码来源:models.py


示例18: create_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import TimeDistributed [as 别名]def create_model(self, ret_model = False):        #base_model = VGG16(weights='imagenet', include_top=False, input_shape = (224, 224, 3))        #base_model.trainable=False        image_model = Sequential()        #image_model.add(base_model)        #image_model.add(Flatten())        image_model.add(Dense(EMBEDDING_DIM, input_dim = 4096, activation='relu'))        image_model.add(RepeatVector(self.max_cap_len))        lang_model = Sequential()        lang_model.add(Embedding(self.vocab_size, 256, input_length=self.max_cap_len))        lang_model.add(LSTM(256,return_sequences=True))        lang_model.add(TimeDistributed(Dense(EMBEDDING_DIM)))        model = Sequential()        model.add(Merge([image_model, lang_model], mode='concat'))        model.add(LSTM(1000,return_sequences=False))        model.add(Dense(self.vocab_size))        model.add(Activation('softmax'))        print "Model created!"        if(ret_model==True):            return model        model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])        return model 
开发者ID:anuragmishracse,项目名称:caption_generator,代码行数:30,代码来源:caption_generator.py


示例19: train

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import TimeDistributed [as 别名]def train(self, text, nb_epoch=100, dropout_rate=0.01, optimizer='rmsprop'):        """ Train the scRNN model.        :param text: training corpus        :param nb_epoch: number of epochs (Default: 100)        :param dropout_rate: dropout rate (Default: 0.01)        :param optimizer: optimizer (Default: "rmsprop")        :type text: str        :type nb_epoch: int        :type dropout_rate: float        :type optimizer: str        """        self.dictionary = Dictionary([nospace_tokenize(text), default_specialsignals.values()])        self.onehotencoder.fit(np.arange(len(self.dictionary)).reshape((len(self.dictionary), 1)))        xylist = [(xvec.transpose(), yvec.transpose()) for xvec, yvec in self.preprocess_text_train(text)]        xtrain = np.array([item[0] for item in xylist])        ytrain = np.array([item[1] for item in xylist])        # neural network here        model = Sequential()        model.add(LSTM(self.nb_hiddenunits, return_sequences=True, batch_input_shape=(None, self.batchsize, len(self.concatcharvec_encoder)*3)))        model.add(Dropout(dropout_rate))        model.add(TimeDistributed(Dense(len(self.dictionary))))        model.add(Activation('softmax'))        # compile... more arguments        model.compile(loss='categorical_crossentropy', optimizer=optimizer)        # training        model.fit(xtrain, ytrain, epochs=nb_epoch)        self.model = model        self.trained = True 
开发者ID:stephenhky,项目名称:PyShortTextCategorization,代码行数:35,代码来源:sakaguchi.py


示例20: set_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import TimeDistributed [as 别名]def set_model(self):        """        Set the HAN model according to the given hyperparameters        """        if self.hyperparameters['l2_regulizer'] is None:            kernel_regularizer = None        else:            kernel_regularizer = regularizers.l2(self.hyperparameters['l2_regulizer'])        if self.hyperparameters['dropout_regulizer'] is None:            dropout_regularizer = 1        else:            dropout_regularizer = self.hyperparameters['dropout_regulizer']        word_input = Input(shape=(self.max_senten_len,), dtype='float32')        word_sequences = self.get_embedding_layer()(word_input)        word_lstm = Bidirectional(            self.hyperparameters['rnn'](self.hyperparameters['rnn_units'], return_sequences=True, kernel_regularizer=kernel_regularizer))(word_sequences)        word_dense = TimeDistributed(            Dense(self.hyperparameters['dense_units'], kernel_regularizer=kernel_regularizer))(word_lstm)        word_att = AttentionWithContext()(word_dense)        wordEncoder = Model(word_input, word_att)        sent_input = Input(shape=(self.max_senten_num, self.max_senten_len), dtype='float32')        sent_encoder = TimeDistributed(wordEncoder)(sent_input)        sent_lstm = Bidirectional(self.hyperparameters['rnn'](            self.hyperparameters['rnn_units'], return_sequences=True, kernel_regularizer=kernel_regularizer))(sent_encoder)        sent_dense = TimeDistributed(            Dense(self.hyperparameters['dense_units'], kernel_regularizer=kernel_regularizer))(sent_lstm)        sent_att = Dropout(dropout_regularizer)(            AttentionWithContext()(sent_dense))        preds = Dense(len(self.classes), activation=self.hyperparameters['activation'])(sent_att)        self.model = Model(sent_input, preds)        self.model.compile(            loss=self.hyperparameters['loss'], optimizer=self.hyperparameters['optimizer'], metrics=self.hyperparameters['metrics']) 
开发者ID:Hsankesara,项目名称:DeepResearch,代码行数:35,代码来源:HAN.py


示例21: set_trainable

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import TimeDistributed [as 别名]def set_trainable(self, layer_regex, keras_model=None, indent=0, verbose=1):        """Sets model layers as trainable if their names match        the given regular expression.        """        # Print message on the first call (but not on recursive calls)        if verbose > 0 and keras_model is None:            log("Selecting layers to train")        keras_model = keras_model or self.keras_model        # In multi-GPU training, we wrap the model. Get layers        # of the inner model because they have the weights.        layers = keras_model.inner_model.layers if hasattr(keras_model, "inner_model") /            else keras_model.layers        for layer in layers:            # Is the layer a model?            if layer.__class__.__name__ == 'Model':                print("In model: ", layer.name)                self.set_trainable(layer_regex, keras_model=layer, indent=indent + 4)                continue            if not layer.weights:                continue            # Is it trainable?            trainable = bool(re.fullmatch(layer_regex, layer.name))            # Update layer. If layer is a container, update inner layer.            if layer.__class__.__name__ == 'TimeDistributed':                layer.layer.trainable = trainable            else:                layer.trainable = trainable            # Print trainble layer names            if trainable and verbose > 0:                log("{}{:20}   ({})".format(" " * indent, layer.name,                                            layer.__class__.__name__)) 
开发者ID:SunskyF,项目名称:EasyPR-python,代码行数:37,代码来源:model.py


示例22: set_trainable

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import TimeDistributed [as 别名]def set_trainable(self, layer_regex, keras_model=None, indent=0, verbose=1):        """Sets model layers as trainable if their names match        the given regular expression.        """        # Print message on the first call (but not on recursive calls)        if verbose > 0 and keras_model is None:            log("Selecting layers to train")        keras_model = keras_model or self.keras_model        # In multi-GPU training, we wrap the model. Get layers        # of the inner model because they have the weights.        layers = keras_model.inner_model.layers if hasattr(keras_model, "inner_model")/            else keras_model.layers        for layer in layers:            # Is the layer a model?            if layer.__class__.__name__ == 'Model':                print("In model: ", layer.name)                self.set_trainable(                    layer_regex, keras_model=layer, indent=indent + 4)                continue            if not layer.weights:                continue            # Is it trainable?            trainable = bool(re.fullmatch(layer_regex, layer.name))            # Update layer. If layer is a container, update inner layer.            if layer.__class__.__name__ == 'TimeDistributed':                layer.layer.trainable = trainable            else:                layer.trainable = trainable            # Print trainble layer names            if trainable and verbose > 0:                log("{}{:20}   ({})".format(" " * indent, layer.name,                                            layer.__class__.__name__)) 
开发者ID:olgaliak,项目名称:segmentation-unet-maskrcnn,代码行数:38,代码来源:model.py


示例23: build_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import TimeDistributed [as 别名]def build_model(batch_size, seq_len, vocab_size=VOCAB_SIZE, embedding_size=32,                rnn_size=128, num_layers=2, drop_rate=0.0,                learning_rate=0.001, clip_norm=5.0):    """    build character embeddings LSTM text generation model.    """    logger.info("building model: batch_size=%s, seq_len=%s, vocab_size=%s, "                "embedding_size=%s, rnn_size=%s, num_layers=%s, drop_rate=%s, "                "learning_rate=%s, clip_norm=%s.",                batch_size, seq_len, vocab_size, embedding_size,                rnn_size, num_layers, drop_rate,                learning_rate, clip_norm)    model = Sequential()    # input shape: (batch_size, seq_len)    model.add(Embedding(vocab_size, embedding_size,                        batch_input_shape=(batch_size, seq_len)))    model.add(Dropout(drop_rate))    # shape: (batch_size, seq_len, embedding_size)    for _ in range(num_layers):        model.add(LSTM(rnn_size, return_sequences=True, stateful=True))        model.add(Dropout(drop_rate))    # shape: (batch_size, seq_len, rnn_size)    model.add(TimeDistributed(Dense(vocab_size, activation="softmax")))    # output shape: (batch_size, seq_len, vocab_size)    optimizer = Adam(learning_rate, clipnorm=clip_norm)    model.compile(loss="categorical_crossentropy", optimizer=optimizer)    return model 
开发者ID:yxtay,项目名称:char-rnn-text-generation,代码行数:29,代码来源:keras_model.py


示例24: han_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import TimeDistributed [as 别名]def han_model(max_len=400,              vocabulary_size=20000,              embedding_dim=128,              hidden_dim=128,              max_sentences=16,              num_classes=4):    """    Implementation of document classification model described in    `Hierarchical Attention Networks for Document Classification (Yang et al., 2016)`    (https://www.cs.cmu.edu/~diyiy/docs/naacl16.pdf)    :param max_len:    :param vocabulary_size:    :param embedding_dim:    :param hidden_dim:    :param max_sentences:    :param num_classes:    :return:    """    print("Hierarchical Attention Network...")    inputs = Input(shape=(max_len,), dtype='int32')    embedding = Embedding(input_dim=vocabulary_size, output_dim=embedding_dim,                          input_length=max_len, name="embedding")(inputs)    lstm_layer = Bidirectional(LSTM(hidden_dim))(embedding)    # lstm_layer_att = AttLayer(hidden_dim)(lstm_layer)    sent_encoder = Model(inputs, lstm_layer)    doc_inputs = Input(shape=(max_sentences, max_len), dtype='int32', name='doc_input')    doc_encoder = TimeDistributed(sent_encoder)(doc_inputs)    doc_layer = Bidirectional(LSTM(hidden_dim))(doc_encoder)    # doc_layer_att = AttLayer(hidden_dim)(doc_layer)    output = Dense(num_classes, activation='softmax')(doc_layer)    model = Model(doc_inputs, output)    model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])    model.summary()    return model 
开发者ID:shibing624,项目名称:text-classifier,代码行数:37,代码来源:deep_model.py


示例25: buildmodel

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import TimeDistributed [as 别名]def buildmodel(model_type,num_labels,frame_width,timesteps,num_features,color_scale,lstm_cells,feature_map_filters,kernel_size,pool_size,dense_hidden_units,activation_output):    if 'lstm' == model_type.lower():        model = Sequential()        model.add(LSTM(lstm_cells,return_sequences=True,input_shape=(frame_width,num_features)))         model.add(LSTM(lstm_cells,return_sequences=True))               elif 'cnn' == model_type.lower():        model = Sequential()        # 4x8 time-frequency filter (goes along both time and frequency axes)        model.add(Conv2D(feature_map_filters, kernel_size=kernel_size, activation='relu',input_shape=(frame_width*timesteps,num_features,color_scale)))        #non-overlapping pool_size 3x3        model.add(MaxPooling2D(pool_size=pool_size))        model.add(Dropout(0.25))        model.add(Dense(dense_hidden_units))            elif 'cnnlstm' == model_type.lower():        cnn = Sequential()        cnn.add(Conv2D(feature_map_filters, kernel_size=kernel_size, activation='relu'))        #non-overlapping pool_size 3x3        cnn.add(MaxPooling2D(pool_size=pool_size))        cnn.add(Dropout(0.25))        cnn.add(Flatten())        #prepare stacked LSTM        model = Sequential()        model.add(TimeDistributed(cnn,input_shape=(timesteps,frame_width,num_features,color_scale)))        model.add(LSTM(lstm_cells,return_sequences=True))        model.add(LSTM(lstm_cells,return_sequences=True))    model.add(Flatten())    model.add(Dense(num_labels,activation=activation_output))     return model 
开发者ID:a-n-rose,项目名称:Build-CNN-or-LSTM-or-CNNLSTM-with-speech-features,代码行数:35,代码来源:build_model.py


万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。