您当前的位置:首页 > IT编程 > Keras
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Python layers.Convolution2D方法代码示例

51自学网 2020-12-01 11:08:51
  Keras
这篇教程Python layers.Convolution2D方法代码示例写得很实用,希望能帮到您。

本文整理汇总了Python中keras.layers.Convolution2D方法的典型用法代码示例。如果您正苦于以下问题:Python layers.Convolution2D方法的具体用法?Python layers.Convolution2D怎么用?Python layers.Convolution2D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.layers的用法示例。

在下文中一共展示了layers.Convolution2D方法的29个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: modelB

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution2D [as 别名]def modelB():    model = Sequential()    model.add(Dropout(0.2, input_shape=(FLAGS.IMAGE_ROWS,                                        FLAGS.IMAGE_COLS,                                        FLAGS.NUM_CHANNELS)))    model.add(Convolution2D(64, 8, 8,                            subsample=(2, 2),                            border_mode='same'))    model.add(Activation('relu'))    model.add(Convolution2D(128, 6, 6,                            subsample=(2, 2),                            border_mode='valid'))    model.add(Activation('relu'))    model.add(Convolution2D(128, 5, 5,                            subsample=(1, 1)))    model.add(Activation('relu'))    model.add(Dropout(0.5))    model.add(Flatten())    model.add(Dense(FLAGS.NUM_CLASSES))    return model 
开发者ID:sunblaze-ucb,项目名称:blackbox-attacks,代码行数:26,代码来源:mnist.py


示例2: modelC

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution2D [as 别名]def modelC():    model = Sequential()    model.add(Convolution2D(128, 3, 3,                            border_mode='valid',                            input_shape=(FLAGS.IMAGE_ROWS,                                         FLAGS.IMAGE_COLS,                                         FLAGS.NUM_CHANNELS)))    model.add(Activation('relu'))    model.add(Convolution2D(64, 3, 3))    model.add(Activation('relu'))    model.add(Dropout(0.25))    model.add(Flatten())    model.add(Dense(128))    model.add(Activation('relu'))    model.add(Dropout(0.5))    model.add(Dense(FLAGS.NUM_CLASSES))    return model 
开发者ID:sunblaze-ucb,项目名称:blackbox-attacks,代码行数:23,代码来源:mnist.py


示例3: modelF

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution2D [as 别名]def modelF():    model = Sequential()    model.add(Convolution2D(32, 3, 3,                            border_mode='valid',                            input_shape=(FLAGS.IMAGE_ROWS,                                         FLAGS.IMAGE_COLS,                                         FLAGS.NUM_CHANNELS)))    model.add(Activation('relu'))    model.add(MaxPooling2D(pool_size=(2, 2)))    model.add(Convolution2D(64, 3, 3))    model.add(Activation('relu'))    model.add(MaxPooling2D(pool_size=(2, 2)))    model.add(Flatten())    model.add(Dense(1024))    model.add(Activation('relu'))    model.add(Dense(FLAGS.NUM_CLASSES))    return model 
开发者ID:sunblaze-ucb,项目名称:blackbox-attacks,代码行数:26,代码来源:mnist.py


示例4: value_distribution_network

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution2D [as 别名]def value_distribution_network(input_shape, num_atoms, action_size, learning_rate):        """Model Value Distribution        With States as inputs and output Probability Distributions for all Actions        """        state_input = Input(shape=(input_shape))         cnn_feature = Convolution2D(32, 8, 8, subsample=(4,4), activation='relu')(state_input)        cnn_feature = Convolution2D(64, 4, 4, subsample=(2,2), activation='relu')(cnn_feature)        cnn_feature = Convolution2D(64, 3, 3, activation='relu')(cnn_feature)        cnn_feature = Flatten()(cnn_feature)        cnn_feature = Dense(512, activation='relu')(cnn_feature)        distribution_list = []        for i in range(action_size):            distribution_list.append(Dense(num_atoms, activation='softmax')(cnn_feature))        model = Model(input=state_input, output=distribution_list)        adam = Adam(lr=learning_rate)        model.compile(loss='categorical_crossentropy',optimizer=adam)        return model 
开发者ID:flyyufelix,项目名称:C51-DDQN-Keras,代码行数:25,代码来源:networks.py


示例5: conv2d_bn

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution2D [as 别名]def conv2d_bn(x, nb_filter, nb_row, nb_col,              border_mode='same', subsample=(1, 1),              name=None):    '''Utility function to apply conv + BN.    '''    if name is not None:        bn_name = name + '_bn'        conv_name = name + '_conv'    else:        bn_name = None        conv_name = None    if K.image_dim_ordering() == 'th':        bn_axis = 1    else:        bn_axis = 3    x = Convolution2D(nb_filter, nb_row, nb_col,                      subsample=subsample,                      activation='relu',                      border_mode=border_mode,                      name=conv_name)(x)    x = BatchNormalization(axis=bn_axis, name=bn_name)(x)    return x 
开发者ID:ChunML,项目名称:DeepLearning,代码行数:24,代码来源:inception_v3.py


示例6: learnConcatRealImagBlock

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution2D [as 别名]def learnConcatRealImagBlock(I, filter_size, featmaps, stage, block, convArgs, bnArgs, d):	"""Learn initial imaginary component for input."""		conv_name_base = 'res'+str(stage)+block+'_branch'	bn_name_base   = 'bn' +str(stage)+block+'_branch'		O = BatchNormalization(name=bn_name_base+'2a', **bnArgs)(I)	O = Activation(d.act)(O)	O = Convolution2D(featmaps[0], filter_size,	                  name               = conv_name_base+'2a',	                  padding            = 'same',	                  kernel_initializer = 'he_normal',	                  use_bias           = False,	                  kernel_regularizer = l2(0.0001))(O)		O = BatchNormalization(name=bn_name_base+'2b', **bnArgs)(O)	O = Activation(d.act)(O)	O = Convolution2D(featmaps[1], filter_size,	                  name               = conv_name_base+'2b',	                  padding            = 'same',	                  kernel_initializer = 'he_normal',	                  use_bias           = False,	                  kernel_regularizer = l2(0.0001))(O)		return O 
开发者ID:ChihebTrabelsi,项目名称:deep_complex_networks,代码行数:27,代码来源:training.py


示例7: build_policy_and_value_networks

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution2D [as 别名]def build_policy_and_value_networks(num_actions, agent_history_length, resized_width, resized_height):    with tf.device("/cpu:0"):        state = tf.placeholder("float", [None, agent_history_length, resized_width, resized_height])                inputs = Input(shape=(agent_history_length, resized_width, resized_height,))        shared = Convolution2D(name="conv1", nb_filter=16, nb_row=8, nb_col=8, subsample=(4,4), activation='relu', border_mode='same')(inputs)        shared = Convolution2D(name="conv2", nb_filter=32, nb_row=4, nb_col=4, subsample=(2,2), activation='relu', border_mode='same')(shared)        shared = Flatten()(shared)        shared = Dense(name="h1", output_dim=256, activation='relu')(shared)        action_probs = Dense(name="p", output_dim=num_actions, activation='softmax')(shared)                state_value = Dense(name="v", output_dim=1, activation='linear')(shared)        policy_network = Model(input=inputs, output=action_probs)        value_network = Model(input=inputs, output=state_value)        p_params = policy_network.trainable_weights        v_params = value_network.trainable_weights        p_out = policy_network(state)        v_out = value_network(state)    return state, p_out, v_out, p_params, v_params 
开发者ID:coreylynch,项目名称:async-rl,代码行数:26,代码来源:a3c_model.py


示例8: build_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution2D [as 别名]def build_model(self):        states_in = Input(shape=self.num_states,name='states_in')        x = Convolution2D(32,(8,8),strides=(4,4),activation='relu')(states_in)        x = Convolution2D(64,(4,4), strides=(2,2), activation='relu')(x)        x = Convolution2D(64,(3,3), strides=(1,1), activation='relu')(x)        x = Flatten(name='flattened')(x)        x = Dense(512,activation='relu')(x)        x = Dense(self.num_actions,activation="linear")(x)        model = Model(inputs=states_in, outputs=x)        self.opt = optimizers.Adam(lr=learning_rate, beta_1=0.9, beta_2=0.999, epsilon=None,decay=0.0, amsgrad=False)        model.compile(loss=keras.losses.mse,optimizer=self.opt)        plot_model(model,to_file='model_architecture.png',show_shapes=True)        return model     # Train function 
开发者ID:PacktPublishing,项目名称:Intelligent-Projects-Using-Python,代码行数:20,代码来源:DQN.py


示例9: fire_module

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution2D [as 别名]def fire_module(x, fire_id, squeeze=16, expand=64):    s_id = 'fire' + str(fire_id) + '/'    if K.image_data_format() == 'channels_first':        channel_axis = 1    else:        channel_axis = 3        x = Convolution2D(squeeze, (1, 1), padding='valid', name=s_id + sq1x1)(x)    x = Activation('relu', name=s_id + relu + sq1x1)(x)    left = Convolution2D(expand, (1, 1), padding='valid', name=s_id + exp1x1)(x)    left = Activation('relu', name=s_id + relu + exp1x1)(left)    right = Convolution2D(expand, (3, 3), padding='same', name=s_id + exp3x3)(x)    right = Activation('relu', name=s_id + relu + exp3x3)(right)    x = concatenate([left, right], axis=channel_axis, name=s_id + 'concat')    return x# Original SqueezeNet from paper. 
开发者ID:OlafenwaMoses,项目名称:Model-Playgrounds,代码行数:24,代码来源:squeezenet.py


示例10: drqn

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution2D [as 别名]def drqn(input_shape, action_size, learning_rate):        model = Sequential()        model.add(TimeDistributed(Convolution2D(32, 8, 8, subsample=(4,4), activation='relu'), input_shape=(input_shape)))        model.add(TimeDistributed(Convolution2D(64, 4, 4, subsample=(2,2), activation='relu')))        model.add(TimeDistributed(Convolution2D(64, 3, 3, activation='relu')))        model.add(TimeDistributed(Flatten()))        # Use all traces for training        #model.add(LSTM(512, return_sequences=True,  activation='tanh'))        #model.add(TimeDistributed(Dense(output_dim=action_size, activation='linear')))        # Use last trace for training        model.add(LSTM(512,  activation='tanh'))        model.add(Dense(output_dim=action_size, activation='linear'))        adam = Adam(lr=learning_rate)        model.compile(loss='mse',optimizer=adam)        return model 
开发者ID:flyyufelix,项目名称:VizDoom-Keras-RL,代码行数:22,代码来源:networks.py


示例11: a2c_lstm

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution2D [as 别名]def a2c_lstm(input_shape, action_size, value_size, learning_rate):        """Actor and Critic Network share convolution layers with LSTM        """        state_input = Input(shape=(input_shape)) # 4x64x64x3        x = TimeDistributed(Convolution2D(32, 8, 8, subsample=(4,4), activation='relu'))(state_input)        x = TimeDistributed(Convolution2D(64, 4, 4, subsample=(2,2), activation='relu'))(x)        x = TimeDistributed(Convolution2D(64, 3, 3, activation='relu'))(x)        x = TimeDistributed(Flatten())(x)        x = LSTM(512, activation='tanh')(x)        # Actor Stream        actor = Dense(action_size, activation='softmax')(x)        # Critic Stream        critic = Dense(value_size, activation='linear')(x)        model = Model(input=state_input, output=[actor, critic])        adam = Adam(lr=learning_rate, clipnorm=1.0)        model.compile(loss=['categorical_crossentropy', 'mse'], optimizer=adam, loss_weights=[1., 1.])        return model 
开发者ID:flyyufelix,项目名称:VizDoom-Keras-RL,代码行数:26,代码来源:networks.py


示例12: build_cnn_to_lstm_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution2D [as 别名]def build_cnn_to_lstm_model(self, input_shape, optimizer=Adam(lr=1e-6, decay=1e-5)):        model = Sequential()        model.add(TimeDistributed(Convolution2D(16, 3, 3), input_shape=input_shape))        model.add(TimeDistributed(Activation('relu')))        model.add(TimeDistributed(Convolution2D(16, 3, 3)))        model.add(TimeDistributed(Activation('relu')))        model.add(TimeDistributed(MaxPooling2D(pool_size=(2, 2))))        model.add(TimeDistributed(Dropout(0.2)))        model.add(TimeDistributed(Flatten()))        model.add(TimeDistributed(Dense(200)))        model.add(TimeDistributed(Dense(50, name="first_dense")))        model.add(LSTM(20, return_sequences=False, name="lstm_layer"))        model.add(Dense(2, activation='softmax'))        model.compile(loss='categorical_crossentropy', optimizer=optimizer)        self.model = model 
开发者ID:Ekim-Yurtsever,项目名称:DeepTL-Lane-Change-Classification,代码行数:21,代码来源:models.py


示例13: test_unsupported_variational_deconv

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution2D [as 别名]def test_unsupported_variational_deconv(self):        from keras.layers import Input, Lambda, Convolution2D, Flatten, Dense        x = Input(shape=(8, 8, 3))        conv_1 = Convolution2D(4, 2, 2, border_mode="same", activation="relu")(x)        flat = Flatten()(conv_1)        hidden = Dense(10, activation="relu")(flat)        z_mean = Dense(10)(hidden)        z_log_var = Dense(10)(hidden)        def sampling(args):            z_mean, z_log_var = args            return z_mean + z_log_var        z = Lambda(sampling, output_shape=(10,))([z_mean, z_log_var])        model = Model([x], [z])        spec = keras.convert(model, ["input"], ["output"]).get_spec() 
开发者ID:apple,项目名称:coremltools,代码行数:19,代码来源:test_keras.py


示例14: get_tutorial_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution2D [as 别名]def get_tutorial_model():    model = Sequential()    model.add(Convolution2D(32, 3, 3, input_shape=(150, 150, 3)))    model.add(Activation('relu'))    model.add(MaxPooling2D(pool_size=(2, 2), dim_ordering='tf'))    model.add(Convolution2D(32, 3, 3))    model.add(Activation('relu'))    model.add(MaxPooling2D(pool_size=(2, 2), dim_ordering='tf'))    model.add(Convolution2D(64, 3, 3))    model.add(Activation('relu'))    model.add(MaxPooling2D(pool_size=(2, 2), dim_ordering='tf'))    # the model so far outputs 3D feature maps (height, width, features)    model.add(Flatten())  # this converts our 3D feature maps to 1D feature vectors    model.add(Dense(64))    model.add(Activation('relu'))    model.add(Dropout(0.5))    model.add(Dense(1))    model.add(Activation('sigmoid'))    return model 
开发者ID:johnmartinsson,项目名称:bird-species-classification,代码行数:26,代码来源:tutorial.py


示例15: get_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution2D [as 别名]def get_model():    model = Sequential()    model.add(Convolution2D(32, 3, 3, input_shape=(150, 150, 3)))    model.add(Activation('relu'))    model.add(MaxPooling2D(pool_size=(2, 2), dim_ordering='tf'))    model.add(Convolution2D(32, 3, 3))    model.add(Activation('relu'))    model.add(MaxPooling2D(pool_size=(2, 2), dim_ordering='tf'))    model.add(Convolution2D(64, 3, 3))    model.add(Activation('relu'))    model.add(MaxPooling2D(pool_size=(2, 2), dim_ordering='tf'))    # the model so far outputs 3D feature maps (height, width, features)    model.add(Flatten())  # this converts our 3D feature maps to 1D feature vectors    model.add(Dense(64))    model.add(Activation('relu'))    model.add(Dropout(0.5))    model.add(Dense(1))    model.add(Activation('sigmoid'))    return model 
开发者ID:johnmartinsson,项目名称:bird-species-classification,代码行数:26,代码来源:tutorial.py


示例16: discriminator_network

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution2D [as 别名]def discriminator_network(input_image_tensor):    """    The discriminator network, Dφ, contains 5 convolution layers and 2 max-pooling layers.    :param input_image_tensor: Input tensor corresponding to an image, either real or refined.    :return: Output tensor that corresponds to the probability of whether an image is real or refined.    """    x = layers.Convolution2D(96, 3, 3, border_mode='same', subsample=(2, 2), activation='relu')(input_image_tensor)    x = layers.Convolution2D(64, 3, 3, border_mode='same', subsample=(2, 2), activation='relu')(x)    x = layers.MaxPooling2D(pool_size=(3, 3), border_mode='same', strides=(1, 1))(x)    x = layers.Convolution2D(32, 3, 3, border_mode='same', subsample=(1, 1), activation='relu')(x)    x = layers.Convolution2D(32, 1, 1, border_mode='same', subsample=(1, 1), activation='relu')(x)    x = layers.Convolution2D(2, 1, 1, border_mode='same', subsample=(1, 1), activation='relu')(x)    # here one feature map corresponds to `is_real` and the other to `is_refined`,    # and the custom loss function is then `tf.nn.sparse_softmax_cross_entropy_with_logits`    return layers.Reshape((-1, 2))(x) 
开发者ID:mjdietzx,项目名称:SimGAN,代码行数:19,代码来源:sim-gan.py


示例17: build_cnn

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution2D [as 别名]def build_cnn(input_shape, nb_filters, filter_size, pool_size):    model = Sequential()    model.add(Convolution2D(nb_filters,                            filter_size[0], filter_size[1],                            border_mode='valid',                            input_shape=input_shape))    model.add(Activation('relu'))    model.add(Convolution2D(nb_filters, filter_size[0], filter_size[1]))    model.add(Activation('relu'))    model.add(MaxPooling2D(pool_size=pool_size))    model.add(Dropout(0.25))    model.add(Flatten())    model.add(Dense(128))    model.add(Activation('relu'))    model.add(Dropout(0.5))    model.add(Dense(nb_classes))    model.add(Activation('softmax'))    return model 
开发者ID:aidiary,项目名称:keras-examples,代码行数:27,代码来源:mnist.py


示例18: identity_block

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution2D [as 别名]def identity_block(input_tensor, kernel_size, filters, stage, block):    nb_filter1, nb_filter2, nb_filter3 = filters    bn_axis = 1    conv_name_base = 'res' + str(stage) + block + '_branch'    bn_name_base = 'bn' + str(stage) + block + '_branch'    x = Convolution2D(nb_filter1, 1, 1, name=conv_name_base + '2a')(input_tensor)    x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)    x = Activation('relu')(x)    x = Convolution2D(nb_filter2, kernel_size, kernel_size,                      border_mode='same', name=conv_name_base + '2b')(x)    x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)    x = Activation('relu')(x)    x = Convolution2D(nb_filter3, 1, 1, name=conv_name_base + '2c')(x)    x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)    x = merge([x, input_tensor], mode='sum')    x = Activation('relu')(x)    return x 
开发者ID:marcellacornia,项目名称:sam,代码行数:24,代码来源:dcn_resnet.py


示例19: conv_block_atrous

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution2D [as 别名]def conv_block_atrous(input_tensor, kernel_size, filters, stage, block, atrous_rate=(2, 2)):    nb_filter1, nb_filter2, nb_filter3 = filters    bn_axis = 1    conv_name_base = 'res' + str(stage) + block + '_branch'    bn_name_base = 'bn' + str(stage) + block + '_branch'    x = Convolution2D(nb_filter1, 1, 1, name=conv_name_base + '2a')(input_tensor)    x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)    x = Activation('relu')(x)    x = AtrousConvolution2D(nb_filter2, kernel_size, kernel_size, border_mode='same',                            atrous_rate=atrous_rate, name=conv_name_base + '2b')(x)    x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)    x = Activation('relu')(x)    x = Convolution2D(nb_filter3, 1, 1, name=conv_name_base + '2c')(x)    x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)    shortcut = Convolution2D(nb_filter3, 1, 1, name=conv_name_base + '1')(input_tensor)    shortcut = BatchNormalization(axis=bn_axis, name=bn_name_base + '1')(shortcut)    x = merge([x, shortcut], mode='sum')    x = Activation('relu')(x)    return x 
开发者ID:marcellacornia,项目名称:sam,代码行数:27,代码来源:dcn_resnet.py


示例20: identity_block_atrous

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution2D [as 别名]def identity_block_atrous(input_tensor, kernel_size, filters, stage, block, atrous_rate=(2, 2)):    nb_filter1, nb_filter2, nb_filter3 = filters    bn_axis = 1    conv_name_base = 'res' + str(stage) + block + '_branch'    bn_name_base = 'bn' + str(stage) + block + '_branch'    x = Convolution2D(nb_filter1, 1, 1, name=conv_name_base + '2a')(input_tensor)    x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)    x = Activation('relu')(x)    x = AtrousConvolution2D(nb_filter2, kernel_size, kernel_size, atrous_rate=atrous_rate,                            border_mode='same', name=conv_name_base + '2b')(x)    x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)    x = Activation('relu')(x)    x = Convolution2D(nb_filter3, 1, 1, name=conv_name_base + '2c')(x)    x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)    x = merge([x, input_tensor], mode='sum')    x = Activation('relu')(x)    return x 
开发者ID:marcellacornia,项目名称:sam,代码行数:24,代码来源:dcn_resnet.py


示例21: conv_2d

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution2D [as 别名]def conv_2d(filters, kernel_shape, strides, padding, input_shape=None):    """    Defines the right convolutional layer according to the    version of Keras that is installed.    :param filters: (required integer) the dimensionality of the output                    space (i.e. the number output of filters in the                    convolution)    :param kernel_shape: (required tuple or list of 2 integers) specifies                         the strides of the convolution along the width and                         height.    :param padding: (required string) can be either 'valid' (no padding around                    input or feature map) or 'same' (pad to ensure that the                    output feature map size is identical to the layer input)    :param input_shape: (optional) give input shape if this is the first                        layer of the model    :return: the Keras layer    """    if LooseVersion(keras.__version__) >= LooseVersion('2.0.0'):        if input_shape is not None:            return Conv2D(filters=filters, kernel_size=kernel_shape,                          strides=strides, padding=padding,                          input_shape=input_shape)        else:            return Conv2D(filters=filters, kernel_size=kernel_shape,                          strides=strides, padding=padding)    else:        if input_shape is not None:            return Convolution2D(filters, kernel_shape[0], kernel_shape[1],                                 subsample=strides, border_mode=padding,                                 input_shape=input_shape)        else:            return Convolution2D(filters, kernel_shape[0], kernel_shape[1],                                 subsample=strides, border_mode=padding) 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:35,代码来源:utils_keras.py


示例22: build_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution2D [as 别名]def build_model(n_classes):    if K.image_dim_ordering() == 'th':        input_shape = (1, N_MEL_BANDS, SEGMENT_DUR)        channel_axis = 1    else:        input_shape = (N_MEL_BANDS, SEGMENT_DUR, 1)        channel_axis = 3    melgram_input = Input(shape=input_shape)    m_sizes = [50, 70]    n_sizes = [1, 3, 5]    n_filters = [128, 64, 32]    maxpool_const = 4    layers = list()    for m_i in m_sizes:        for i, n_i in enumerate(n_sizes):            x = Convolution2D(n_filters[i], m_i, n_i,                              border_mode='same',                              init='he_normal',                              W_regularizer=l2(1e-5),                              name=str(n_i)+'_'+str(m_i)+'_'+'conv')(melgram_input)            x = BatchNormalization(axis=channel_axis, mode=0, name=str(n_i)+'_'+str(m_i)+'_'+'bn')(x)            x = ELU()(x)            x = MaxPooling2D(pool_size=(N_MEL_BANDS, SEGMENT_DUR/maxpool_const), name=str(n_i)+'_'+str(m_i)+'_'+'pool')(x)            x = Flatten(name=str(n_i)+'_'+str(m_i)+'_'+'flatten')(x)            layers.append(x)    x = merge(layers, mode='concat', concat_axis=channel_axis)    x = Dropout(0.5)(x)    x = Dense(n_classes, init='he_normal', W_regularizer=l2(1e-5), activation='softmax', name='prediction')(x)    model = Model(melgram_input, x)    return model 
开发者ID:Veleslavia,项目名称:EUSIPCO2017,代码行数:38,代码来源:singlelayer.py


示例23: arch

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution2D [as 别名]def arch(inp):  con1 = Convolution2D(32, 3, 3, border_mode='valid', activation = 'relu', subsample=(2,2))  con2 = Convolution2D(32, 3, 3, activation = 'relu', subsample=(2,2))  fla1 = Flatten()  den1 = Dense(128, activation = 'relu')  den2 = Dense(nb_classes, activation = 'softmax')  out = den2(den1(fla1(con2(con1(inp)))))  # fla1 = Flatten()  # den1 = Dense(128, activation = 'relu')  # den2 = Dense(128, activation = 'relu')  # den3 = Dense(nb_classes, activation = 'softmax')  # out = den3(den2(den1(fla1(inp))))  return out 
开发者ID:indraforyou,项目名称:keras_tfrecord,代码行数:17,代码来源:mnist_tfrecord.py


示例24: DarknetConv2D

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution2D [as 别名]def DarknetConv2D(*args, **kwargs):    """Wrapper to set Darknet weight regularizer for Convolution2D."""    darknet_conv_kwargs = {'W_regularizer': l2(5e-4)}    darknet_conv_kwargs.update(kwargs)    return _DarknetConv2D(*args, **darknet_conv_kwargs) 
开发者ID:PiSimo,项目名称:PiCamNN,代码行数:7,代码来源:keras_darknet19.py


示例25: DarknetConv2D_BN_Leaky

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution2D [as 别名]def DarknetConv2D_BN_Leaky(*args, **kwargs):    """Darknet Convolution2D followed by BatchNormalization and LeakyReLU."""    return compose(        DarknetConv2D(*args, **kwargs),        BatchNormalization(),        LeakyReLU(alpha=0.1)) 
开发者ID:PiSimo,项目名称:PiCamNN,代码行数:8,代码来源:keras_darknet19.py


示例26: create_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution2D [as 别名]def create_model():    model = Sequential()    model.add(Convolution2D(32, 3, 3,                            border_mode='valid',                             input_shape=(100, 100, 3)))      model.add(Activation('relu'))      model.add(Convolution2D(32, 3, 3))      model.add(Activation('relu'))      model.add(MaxPooling2D(pool_size=(2, 2)))      model.add(Dropout(0.25))            model.add(Convolution2D(64, 3, 3,                             border_mode='valid'))      model.add(Activation('relu'))      model.add(Convolution2D(64, 3, 3))      model.add(Activation('relu'))      model.add(MaxPooling2D(pool_size=(2, 2)))      model.add(Dropout(0.25))            model.add(Flatten())      model.add(Dense(256))      model.add(Activation('relu'))      model.add(Dropout(0.5))    model.add(Dense(2))      model.add(Activation('softmax'))      return model 
开发者ID:JasonDoingGreat,项目名称:Convolutional-Networks-for-Stock-Predicting,代码行数:31,代码来源:cnn_main.py


示例27: get_logit_cnn_layers

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution2D [as 别名]def get_logit_cnn_layers(nb_units, p, wd, nb_classes, layers = [], dropout = False):    # number of convolutional filters to use    nb_filters = 32    # size of pooling area for max pooling    pool_size = (2, 2)    # convolution kernel size    kernel_size = (3, 3)    if dropout == 'MC':        D = Dropout_mc    if dropout == 'pW':        D = pW    if dropout == 'none':        D = Identity    layers.append(Convolution2D(nb_filters, kernel_size[0], kernel_size[1],                                border_mode='valid', W_regularizer=l2(wd)))    layers.append(Activation('relu'))    layers.append(Convolution2D(nb_filters, kernel_size[0], kernel_size[1],                                W_regularizer=l2(wd)))    layers.append(Activation('relu'))    layers.append(MaxPooling2D(pool_size=pool_size))    layers.append(Flatten())    layers.append(D(p))    layers.append(Dense(nb_units, W_regularizer=l2(wd)))    layers.append(Activation('relu'))    layers.append(D(p))    layers.append(Dense(nb_classes, W_regularizer=l2(wd)))    return layers 
开发者ID:YingzhenLi,项目名称:Dropout_BBalpha,代码行数:32,代码来源:BBalpha_dropout.py


示例28: identity_block

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution2D [as 别名]def identity_block(input_tensor, kernel_size, filters, stage, block):    '''The identity_block is the block that has no conv layer at shortcut    # Arguments        input_tensor: input tensor        kernel_size: defualt 3, the kernel size of middle conv layer at main path        filters: list of integers, the nb_filters of 3 conv layer at main path        stage: integer, current stage label, used for generating layer names        block: 'a','b'..., current block label, used for generating layer names    '''    nb_filter1, nb_filter2, nb_filter3 = filters    if K.image_dim_ordering() == 'tf':        bn_axis = 3    else:        bn_axis = 1    conv_name_base = 'res' + str(stage) + block + '_branch'    bn_name_base = 'bn' + str(stage) + block + '_branch'    x = Convolution2D(nb_filter1, 1, 1, name=conv_name_base + '2a')(input_tensor)    x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)    x = Activation('relu')(x)    x = Convolution2D(nb_filter2, kernel_size, kernel_size,                      border_mode='same', name=conv_name_base + '2b')(x)    x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)    x = Activation('relu')(x)    x = Convolution2D(nb_filter3, 1, 1, name=conv_name_base + '2c')(x)    x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)    x = merge([x, input_tensor], mode='sum')    x = Activation('relu')(x)    return x 
开发者ID:ChunML,项目名称:DeepLearning,代码行数:35,代码来源:resnet50.py


示例29: conv_block

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution2D [as 别名]def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2)):    '''conv_block is the block that has a conv layer at shortcut    # Arguments        input_tensor: input tensor        kernel_size: defualt 3, the kernel size of middle conv layer at main path        filters: list of integers, the nb_filters of 3 conv layer at main path        stage: integer, current stage label, used for generating layer names        block: 'a','b'..., current block label, used for generating layer names    Note that from stage 3, the first conv layer at main path is with subsample=(2,2)    And the shortcut should have subsample=(2,2) as well    '''    nb_filter1, nb_filter2, nb_filter3 = filters    if K.image_dim_ordering() == 'tf':        bn_axis = 3    else:        bn_axis = 1    conv_name_base = 'res' + str(stage) + block + '_branch'    bn_name_base = 'bn' + str(stage) + block + '_branch'    x = Convolution2D(nb_filter1, 1, 1, subsample=strides,                      name=conv_name_base + '2a')(input_tensor)    x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)    x = Activation('relu')(x)    x = Convolution2D(nb_filter2, kernel_size, kernel_size, border_mode='same',                      name=conv_name_base + '2b')(x)    x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)    x = Activation('relu')(x)    x = Convolution2D(nb_filter3, 1, 1, name=conv_name_base + '2c')(x)    x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)    shortcut = Convolution2D(nb_filter3, 1, 1, subsample=strides,                             name=conv_name_base + '1')(input_tensor)    shortcut = BatchNormalization(axis=bn_axis, name=bn_name_base + '1')(shortcut)    x = merge([x, shortcut], mode='sum')    x = Activation('relu')(x)    return x 
开发者ID:ChunML,项目名称:DeepLearning,代码行数:43,代码来源:resnet50.py


万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。