您当前的位置:首页 > IT编程 > Keras
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Python layers.UpSampling2D方法代码示例

51自学网 2020-12-01 11:08:52
  Keras
这篇教程Python layers.UpSampling2D方法代码示例写得很实用,希望能帮到您。

本文整理汇总了Python中keras.layers.UpSampling2D方法的典型用法代码示例。如果您正苦于以下问题:Python layers.UpSampling2D方法的具体用法?Python layers.UpSampling2D怎么用?Python layers.UpSampling2D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.layers的用法示例。

在下文中一共展示了layers.UpSampling2D方法的27个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: build_cae_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling2D [as 别名]def build_cae_model(height=32, width=32, channel=3):    """    build convolutional autoencoder model    """    input_img = Input(shape=(height, width, channel))    # encoder    net = Conv2D(16, (3, 3), activation='relu', padding='same')(input_img)    net = MaxPooling2D((2, 2), padding='same')(net)    net = Conv2D(8, (3, 3), activation='relu', padding='same')(net)    net = MaxPooling2D((2, 2), padding='same')(net)    net = Conv2D(4, (3, 3), activation='relu', padding='same')(net)    encoded = MaxPooling2D((2, 2), padding='same', name='enc')(net)    # decoder    net = Conv2D(4, (3, 3), activation='relu', padding='same')(encoded)    net = UpSampling2D((2, 2))(net)    net = Conv2D(8, (3, 3), activation='relu', padding='same')(net)    net = UpSampling2D((2, 2))(net)    net = Conv2D(16, (3, 3), activation='relu', padding='same')(net)    net = UpSampling2D((2, 2))(net)    decoded = Conv2D(channel, (3, 3), activation='sigmoid', padding='same')(net)    return Model(input_img, decoded) 
开发者ID:hiram64,项目名称:ocsvm-anomaly-detection,代码行数:26,代码来源:model.py


示例2: g_block

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling2D [as 别名]def g_block(inp, fil, u = True):    if u:        out = UpSampling2D(interpolation = 'bilinear')(inp)    else:        out = Activation('linear')(inp)    skip = Conv2D(fil, 1, padding = 'same', kernel_initializer = 'he_normal')(out)    out = Conv2D(filters = fil, kernel_size = 3, padding = 'same', kernel_initializer = 'he_normal')(out)    out = LeakyReLU(0.2)(out)    out = Conv2D(filters = fil, kernel_size = 3, padding = 'same', kernel_initializer = 'he_normal')(out)    out = LeakyReLU(0.2)(out)    out = Conv2D(fil, 1, padding = 'same', kernel_initializer = 'he_normal')(out)    out = add([out, skip])    out = LeakyReLU(0.2)(out)    return out 
开发者ID:manicman1999,项目名称:Keras-BiGAN,代码行数:23,代码来源:bigan.py


示例3: yolo_main

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling2D [as 别名]def yolo_main(input, num_anchors, num_classes):    darknet_network = Model(input, darknet(input))    network, network_1 = last_layers(darknet_network.output, 512, num_anchors * (num_classes + 5), layer_name="last1")    network = NetworkConv2D_BN_Leaky( input=network, channels=256, kernel_size=(1,1))    network = UpSampling2D(2)(network)    network = Concatenate()([network, darknet_network.layers[152].output])    network, network_2 = last_layers(network,  256,  num_anchors * (num_classes + 5), layer_name="last2")    network = NetworkConv2D_BN_Leaky(input=network, channels=128, kernel_size=(1, 1))    network = UpSampling2D(2)(network)    network = Concatenate()([network, darknet_network.layers[92].output])    network, network_3 = last_layers(network, 128, num_anchors * (num_classes + 5), layer_name="last3")    return Model(input, [network_1, network_2, network_3]) 
开发者ID:OlafenwaMoses,项目名称:ImageAI,代码行数:21,代码来源:models.py


示例4: build_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling2D [as 别名]def build_model():    model = Sequential()    model.add(InputLayer(input_shape=(None, None, 1)))    model.add(Conv2D(8, (3, 3), activation='relu', padding='same', strides=2))    model.add(Conv2D(8, (3, 3), activation='relu', padding='same'))    model.add(Conv2D(16, (3, 3), activation='relu', padding='same'))    model.add(Conv2D(16, (3, 3), activation='relu', padding='same', strides=2))    model.add(Conv2D(32, (3, 3), activation='relu', padding='same'))    model.add(Conv2D(32, (3, 3), activation='relu', padding='same', strides=2))    model.add(UpSampling2D((2, 2)))    model.add(Conv2D(32, (3, 3), activation='relu', padding='same'))    model.add(UpSampling2D((2, 2)))    model.add(Conv2D(16, (3, 3), activation='relu', padding='same'))    model.add(UpSampling2D((2, 2)))    model.add(Conv2D(2, (3, 3), activation='tanh', padding='same'))    # model.compile(optimizer='rmsprop', loss='mse')    model.compile(optimizer='adam', loss='mse')    return model#训练数据 
开发者ID:vipstone,项目名称:faceai,代码行数:23,代码来源:colorize.py


示例5: convolutional_autoencoder

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling2D [as 别名]def convolutional_autoencoder():    input_shape=(28,28,1)    n_channels = input_shape[-1]    model = Sequential()    model.add(Conv2D(32, (3,3), activation='relu', padding='same', input_shape=input_shape))    model.add(MaxPool2D(padding='same'))    model.add(Conv2D(16, (3,3), activation='relu', padding='same'))    model.add(MaxPool2D(padding='same'))    model.add(Conv2D(8, (3,3), activation='relu', padding='same'))    model.add(UpSampling2D())    model.add(Conv2D(16, (3,3), activation='relu', padding='same'))    model.add(UpSampling2D())    model.add(Conv2D(32, (3,3), activation='relu', padding='same'))    model.add(Conv2D(n_channels, (3,3), activation='sigmoid', padding='same'))    return model 
开发者ID:otenim,项目名称:AnomalyDetectionUsingAutoencoder,代码行数:18,代码来源:models.py


示例6: test_tiny_conv_upsample_random

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling2D [as 别名]def test_tiny_conv_upsample_random(self):        np.random.seed(1988)        input_dim = 10        input_shape = (input_dim, input_dim, 1)        num_kernels = 3        kernel_height = 5        kernel_width = 5        # Define a model        model = Sequential()        model.add(            Conv2D(                input_shape=input_shape,                filters=num_kernels,                kernel_size=(kernel_height, kernel_width),            )        )        model.add(UpSampling2D(size=2))        # Set some random weights        model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])        # Test the keras model        self._test_model(model) 
开发者ID:apple,项目名称:coremltools,代码行数:26,代码来源:test_keras2_numeric.py


示例7: test_upsample_layer_params

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling2D [as 别名]def test_upsample_layer_params(self):        options = dict(size=[(2, 2), (3, 3), (4, 4), (5, 5)])        np.random.seed(1988)        input_dim = 10        input_shape = (input_dim, input_dim, 1)        X = np.random.rand(1, *input_shape)        # Define a function that tests a model        def build_model(x):            kwargs = dict(zip(options.keys(), x))            model = Sequential()            model.add(Conv2D(filters=5, kernel_size=(7, 7), input_shape=input_shape))            model.add(UpSampling2D(**kwargs))            return x, model        # Iterate through all combinations        product = itertools.product(*options.values())        args = [build_model(p) for p in product]        # Test the cases        print("Testing a total of %s cases. This could take a while" % len(args))        for param, model in args:            self._run_test(model, param) 
开发者ID:apple,项目名称:coremltools,代码行数:26,代码来源:test_keras2_numeric.py


示例8: get_autoencoder_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling2D [as 别名]def get_autoencoder_model(input_shape, labels=10):    """    An autoencoder for MNIST to be used in the DAL implementation.    """    image = Input(shape=input_shape)    encoder = Conv2D(32, (3, 3), activation='relu', padding='same')(image)    encoder = MaxPooling2D((2, 2), padding='same')(encoder)    encoder = Conv2D(8, (3, 3), activation='relu', padding='same')(encoder)    encoder = Conv2D(4, (3, 3), activation='relu', padding='same')(encoder)    encoder = MaxPooling2D((2, 2), padding='same')(encoder)    decoder = UpSampling2D((2, 2), name='embedding')(encoder)    decoder = Conv2D(4, (3, 3), activation='relu', padding='same')(decoder)    decoder = Conv2D(8, (3, 3), activation='relu', padding='same')(decoder)    decoder = UpSampling2D((2, 2))(decoder)    decoder = Conv2D(32, (3, 3), activation='relu', padding='same')(decoder)    decoder = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(decoder)    autoencoder = Model(image, decoder)    return autoencoder 
开发者ID:dsgissin,项目名称:DiscriminativeActiveLearning,代码行数:23,代码来源:models.py


示例9: _up_block

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling2D [as 别名]def _up_block(block,mrge, nb_filters):    up = merge([Convolution2D(2*nb_filters, 2, 2, border_mode='same')(UpSampling2D(size=(2, 2))(block)), mrge], mode='concat', concat_axis=1)    # conv = Convolution2D(4*nb_filters, 1, 1, activation='relu', border_mode='same')(up)    conv = Convolution2D(nb_filters, 3, 3, activation='relu', border_mode='same')(up)    conv = Convolution2D(nb_filters, 3, 3, activation='relu', border_mode='same')(conv)    # conv = Convolution2D(4*nb_filters, 1, 1, activation='relu', border_mode='same')(conv)    # conv = Convolution2D(nb_filters, 3, 3, activation='relu', border_mode='same')(conv)    # conv = Convolution2D(nb_filters, 1, 1, activation='relu', border_mode='same')(conv)        # conv = Convolution2D(4*nb_filters, 1, 1, activation='relu', border_mode='same')(conv)    # conv = Convolution2D(nb_filters, 3, 3, activation='relu', border_mode='same')(conv)    # conv = Convolution2D(nb_filters, 1, 1, activation='relu', border_mode='same')(conv)    return conv# http://arxiv.org/pdf/1512.03385v1.pdf# 50 Layer resnet 
开发者ID:yihui-he,项目名称:u-net,代码行数:21,代码来源:train_res.py


示例10: Upsample2D_block

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling2D [as 别名]def Upsample2D_block(filters, stage, kernel_size=(3,3), upsample_rate=(2,2),                     use_batchnorm=False, skip=None):    def layer(input_tensor):        conv_name, bn_name, relu_name, up_name = handle_block_names(stage)        x = UpSampling2D(size=upsample_rate, name=up_name)(input_tensor)        if skip is not None:            x = Concatenate()([x, skip])        x = ConvRelu(filters, kernel_size, use_batchnorm=use_batchnorm,                     conv_name=conv_name + '1', bn_name=bn_name + '1', relu_name=relu_name + '1')(x)        x = ConvRelu(filters, kernel_size, use_batchnorm=use_batchnorm,                     conv_name=conv_name + '2', bn_name=bn_name + '2', relu_name=relu_name + '2')(x)        return x    return layer 
开发者ID:SpaceNetChallenge,项目名称:SpaceNet_Off_Nadir_Solutions,代码行数:22,代码来源:blocks.py


示例11: Conv2DUpsample

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling2D [as 别名]def Conv2DUpsample(filters,                   upsample_rate,                   kernel_size=(3,3),                   up_name='up',                   conv_name='conv',                   **kwargs):    def layer(input_tensor):        x = UpSampling2D(upsample_rate, name=up_name)(input_tensor)        x = Conv2D(filters,                   kernel_size,                   padding='same',                   name=conv_name,                   **kwargs)(x)        return x    return layer 
开发者ID:SpaceNetChallenge,项目名称:SpaceNet_Off_Nadir_Solutions,代码行数:18,代码来源:blocks.py


示例12: inception_resnet_v2_fpn

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling2D [as 别名]def inception_resnet_v2_fpn(input_shape, channels=1, activation="sigmoid"):    inceresv2 = InceptionResNetV2Same(input_shape=input_shape, include_top=False)    conv1, conv2, conv3, conv4, conv5 = inceresv2.output    P1, P2, P3, P4, P5 = create_pyramid_features(conv1, conv2, conv3, conv4, conv5)    x = concatenate(        [            prediction_fpn_block(P5, "P5", (8, 8)),            prediction_fpn_block(P4, "P4", (4, 4)),            prediction_fpn_block(P3, "P3", (2, 2)),            prediction_fpn_block(P2, "P2"),        ]    )    x = conv_bn_relu(x, 256, 3, (1, 1), name="aggregation")    x = decoder_block_no_bn(x, 128, conv1, 'up4')    x = UpSampling2D()(x)    x = conv_relu(x, 64, 3, (1, 1), name="up5_conv1")    x = conv_relu(x, 64, 3, (1, 1), name="up5_conv2")    if activation == 'softmax':        name = 'mask_softmax'        x = Conv2D(channels, (1, 1), activation=activation, name=name)(x)    else:        x = Conv2D(channels, (1, 1), activation=activation, name="mask")(x)    model = Model(inceresv2.input, x)    return model 
开发者ID:selimsef,项目名称:dsb2018_topcoders,代码行数:27,代码来源:unets.py


示例13: mnist_generator

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling2D [as 别名]def mnist_generator(input_shape=(28, 28, 1), scale=1/4):    x0 = Input(input_shape)    x = Conv2D(int(128*scale), (3, 3), strides=(2, 2), padding='same')(x0)    x = InstanceNormalization()(x)    x = LeakyReLU()(x)    x = Conv2D(int(64*scale), (3, 3), strides=(2, 2), padding='same')(x)    x = InstanceNormalization()(x)    x = LeakyReLU()(x)    x = residual_block(x, scale, num_id=2)    x = residual_block(x, scale*2, num_id=3)    x = UpSampling2D(size=(2, 2))(x)    x = Conv2D(int(1024*scale), (1, 1))(x)    x = InstanceNormalization()(x)    x = LeakyReLU()(x)    x = UpSampling2D(size=(2, 2))(x)    x = Conv2D(1, (1, 1), activation='sigmoid')(x)    return Model(x0, x) 
开发者ID:alecGraves,项目名称:cyclegan_keras,代码行数:19,代码来源:models.py


示例14: model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling2D [as 别名]def model():    model = VGG16(include_top=False, input_shape=(128, 128, 3))    x = model.output    y = x    x = Flatten()(x)    x = Dense(1024, activation='relu')(x)    x = Dropout(0.5)(x)    x = Dense(1024, activation='relu')(x)    x = Dropout(0.5)(x)    probability = Dense(5, activation='sigmoid', name='probabilistic_output')(x)    y = UpSampling2D((3, 3))(y)    y = Activation('relu')(y)    y = Conv2D(1, (3, 3), activation='linear')(y)    position = Reshape(target_shape=(10, 10), name='positional_output')(y)    model = Model(input=model.input, outputs=[probability, position])    return model 
开发者ID:MahmudulAlam,项目名称:Unified-Gesture-and-Fingertip-Detection,代码行数:20,代码来源:network.py


示例15: apn_module

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling2D [as 别名]def apn_module(self, x):        def right(x):            x = layers.AveragePooling2D()(x)            x = layers.Conv2D(self.classes, kernel_size=1, padding='same')(x)            x = layers.BatchNormalization()(x)            x = layers.Activation('relu')(x)            x = layers.UpSampling2D(interpolation='bilinear')(x)            return x        def conv(x, filters, kernel_size, stride):            x = layers.Conv2D(filters, kernel_size=kernel_size, strides=(stride, stride), padding='same')(x)            x = layers.BatchNormalization()(x)            x = layers.Activation('relu')(x)            return x        x_7 = conv(x, int(x.shape[-1]), 7, stride=2)        x_5 = conv(x_7, int(x.shape[-1]), 5, stride=2)        x_3 = conv(x_5, int(x.shape[-1]), 3, stride=2)        x_3_1 = conv(x_3, self.classes, 3, stride=1)        x_3_1_up = layers.UpSampling2D(interpolation='bilinear')(x_3_1)        x_5_1 = conv(x_5, self.classes, 5, stride=1)        x_3_5 = layers.add([x_5_1, x_3_1_up])        x_3_5_up = layers.UpSampling2D(interpolation='bilinear')(x_3_5)        x_7_1 = conv(x_7, self.classes, 3, stride=1)        x_3_5_7 = layers.add([x_7_1, x_3_5_up])        x_3_5_7_up = layers.UpSampling2D(interpolation='bilinear')(x_3_5_7)        x_middle = conv(x, self.classes, 1, stride=1)        x_middle = layers.multiply([x_3_5_7_up, x_middle])        x_right = right(x)        x_middle = layers.add([x_middle, x_right])        return x_middle 
开发者ID:JACKYLUO1991,项目名称:Face-skin-hair-segmentaiton-and-skin-color-evaluation,代码行数:37,代码来源:lednet.py


示例16: decoder

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling2D [as 别名]def decoder(self, x):        x = self.apn_module(x)        x = layers.UpSampling2D(size=8, interpolation='bilinear')(x)        x = layers.Conv2D(self.classes, kernel_size=3, padding='same')(x)        x = layers.BatchNormalization()(x)        x = layers.Activation('softmax')(x)        return x 
开发者ID:JACKYLUO1991,项目名称:Face-skin-hair-segmentaiton-and-skin-color-evaluation,代码行数:9,代码来源:lednet.py


示例17: get_unet_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling2D [as 别名]def get_unet_model(input_channel_num=3, out_ch=3, start_ch=64, depth=4, inc_rate=2., activation='relu',         dropout=0.5, batchnorm=False, maxpool=True, upconv=True, residual=False):    def _conv_block(m, dim, acti, bn, res, do=0):        n = Conv2D(dim, 3, activation=acti, padding='same')(m)        n = BatchNormalization()(n) if bn else n        n = Dropout(do)(n) if do else n        n = Conv2D(dim, 3, activation=acti, padding='same')(n)        n = BatchNormalization()(n) if bn else n        return Concatenate()([m, n]) if res else n    def _level_block(m, dim, depth, inc, acti, do, bn, mp, up, res):        if depth > 0:            n = _conv_block(m, dim, acti, bn, res)            m = MaxPooling2D()(n) if mp else Conv2D(dim, 3, strides=2, padding='same')(n)            m = _level_block(m, int(inc * dim), depth - 1, inc, acti, do, bn, mp, up, res)            if up:                m = UpSampling2D()(m)                m = Conv2D(dim, 2, activation=acti, padding='same')(m)            else:                m = Conv2DTranspose(dim, 3, strides=2, activation=acti, padding='same')(m)            n = Concatenate()([n, m])            m = _conv_block(n, dim, acti, bn, res)        else:            m = _conv_block(m, dim, acti, bn, res, do)        return m    i = Input(shape=(None, None, input_channel_num))    o = _level_block(i, start_ch, depth, inc_rate, activation, dropout, batchnorm, maxpool, upconv, residual)    o = Conv2D(out_ch, 1)(o)    model = Model(inputs=i, outputs=o)    return model 
开发者ID:zxq2233,项目名称:n2n-watermark-remove,代码行数:36,代码来源:model.py


示例18: upSampling

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling2D [as 别名]def upSampling(x, skip_36, skip_61, layer_idx, num_classes=80):    out_filters = 3*(num_classes+5)    yolo_83 = _conv_block(x, [{'filter': 1024, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': layer_idx},            {'filter':  out_filters, 'kernel': 1, 'stride': 1, 'bnorm': False, 'leaky': False, 'layer_idx': layer_idx+1}], skip=False)    x = _conv_block(x, [{'filter':  256, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': layer_idx+4}],/                    skip = False)    x = UpSampling2D(2)(x)    x = concatenate([x, skip_61])    x = _conv_block(x, [{'filter': 256, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': layer_idx+7},            {'filter': 512, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': layer_idx+8},            {'filter': 256, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': layer_idx+9},            {'filter': 512, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': layer_idx+10},            {'filter': 256, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': layer_idx+11}], skip=False)  # Layer 92 => 94    yolo_95 = _conv_block(x, [{'filter': 512, 'kernel': 3, 'stride': 1, 'bnorm': True,  'leaky': True, /                               'layer_idx': layer_idx+12},                {'filter': out_filters, 'kernel': 1, 'stride': 1, 'bnorm': False, 'leaky': False, 'layer_idx': layer_idx+13}],/                          skip=False)  # Layer 95 => 98    x = _conv_block(x, [{'filter': 128, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True,   'layer_idx': layer_idx+16}],/                    skip=False)    x = UpSampling2D(2)(x)    x = concatenate([x, skip_36])  # Layer 99 => 106    yolo_107 = _conv_block(x, [{'filter': 128, 'kernel': 1, 'stride': 1, 'bnorm': True,  'leaky': True, /                                'layer_idx':layer_idx+19},                 {'filter': 256, 'kernel': 3, 'stride': 1, 'bnorm': True,  'leaky': True,  'layer_idx': layer_idx+20},                 {'filter': 128, 'kernel': 1, 'stride': 1, 'bnorm': True,  'leaky': True,  'layer_idx': layer_idx+21},                 {'filter': 256, 'kernel': 3, 'stride': 1, 'bnorm': True,  'leaky': True,  'layer_idx': layer_idx+22},                 {'filter': 128, 'kernel': 1, 'stride': 1, 'bnorm': True,  'leaky': True,  'layer_idx': layer_idx+23},                 {'filter': 256, 'kernel': 3, 'stride': 1, 'bnorm': True,  'leaky': True,  'layer_idx': layer_idx+24},                 {'filter': out_filters, 'kernel': 1, 'stride': 1, 'bnorm': False, 'leaky': False, 'layer_idx': layer_idx+25}],/                           skip=False)            return yolo_83, yolo_95, yolo_107#The midblock is where the spatial pyramid pooling as well as the FC block with change for the YOLOv3-SPP model are reflected 
开发者ID:produvia,项目名称:ai-platform,代码行数:41,代码来源:yolov3_weights_to_keras.py


示例19: decoder

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling2D [as 别名]def decoder(self, encoded):        decoded = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded)        decoded = UpSampling2D((2, 2))(decoded)        decoded = Conv2D(8, (3, 3), activation='relu', padding='same')(decoded)        decoded = UpSampling2D((2, 2))(decoded)        decoded = Conv2D(16, (3, 3), activation='relu')(decoded)        decoded = UpSampling2D((2, 2))(decoded)        decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(decoded)        return decoded 
开发者ID:akshaybahadur21,项目名称:DigiEncoder,代码行数:11,代码来源:Coder.py


示例20: tiny_yolo_main

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling2D [as 别名]def tiny_yolo_main(input, num_anchors, num_classes):    network_1 = NetworkConv2D_BN_Leaky(input=input, channels=16, kernel_size=(3,3) )    network_1 = MaxPool2D(pool_size=(2,2), strides=(2,2), padding="same")(network_1)    network_1 = NetworkConv2D_BN_Leaky(input=network_1, channels=32, kernel_size=(3, 3))    network_1 = MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding="same")(network_1)    network_1 = NetworkConv2D_BN_Leaky(input=network_1, channels=64, kernel_size=(3, 3))    network_1 = MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding="same")(network_1)    network_1 = NetworkConv2D_BN_Leaky(input=network_1, channels=128, kernel_size=(3, 3))    network_1 = MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding="same")(network_1)    network_1 = NetworkConv2D_BN_Leaky(input=network_1, channels=256, kernel_size=(3, 3))    network_2 = MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding="same")(network_1)    network_2 = NetworkConv2D_BN_Leaky(input=network_2, channels=512, kernel_size=(3, 3))    network_2 = MaxPool2D(pool_size=(2, 2), strides=(1, 1), padding="same")(network_2)    network_2 = NetworkConv2D_BN_Leaky(input=network_2, channels=1024, kernel_size=(3, 3))    network_2 = NetworkConv2D_BN_Leaky(input=network_2, channels=256, kernel_size=(1, 1))    network_3 = NetworkConv2D_BN_Leaky(input=network_2, channels=512, kernel_size=(3, 3))    network_3 = Conv2D(num_anchors * (num_classes + 5),  kernel_size=(1,1))(network_3)    network_2 = NetworkConv2D_BN_Leaky(input=network_2, channels=128, kernel_size=(1, 1))    network_2 = UpSampling2D(2)(network_2)    network_4 = Concatenate()([network_2, network_1])    network_4 = NetworkConv2D_BN_Leaky(input=network_4, channels=256, kernel_size=(3, 3))    network_4 = Conv2D(num_anchors * (num_classes + 5), kernel_size=(1,1))(network_4)    return Model(input, [network_3, network_4]) 
开发者ID:OlafenwaMoses,项目名称:ImageAI,代码行数:30,代码来源:models.py


示例21: connect_left_right

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling2D [as 别名]def connect_left_right(left, right, num_channels, num_channels_next, name):  # left: 2 residual modules  left = residual(left, num_channels_next, name=name + 'skip.0')  left = residual(left, num_channels_next, name=name + 'skip.1')  # up: 2 times residual & nearest neighbour  out = residual(right, num_channels, name=name + 'out.0')  out = residual(out, num_channels_next, name=name + 'out.1')  out = UpSampling2D(name=name + 'out.upsampleNN')(out)  out = Add(name=name + 'out.add')([left, out])  return out 
开发者ID:see--,项目名称:keras-centernet,代码行数:13,代码来源:hourglass.py


示例22: emit_UpSampling2D

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling2D [as 别名]def emit_UpSampling2D(self, IR_node, in_scope=False):        code = "{:<15} = layers.UpSampling2D(name='{}', size= ({}), data_format = 'channels_last')({})".format(            IR_node.variable_name,            IR_node.name,            IR_node.get_attr('scales'),            self.parent_variable_name(IR_node))        return code 
开发者ID:microsoft,项目名称:MMdnn,代码行数:9,代码来源:keras2_emitter.py


示例23: uk

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling2D [as 别名]def uk(self, x, k):        # (up sampling followed by 1x1 convolution <=> fractional-strided 1/2)        if self.use_resize_convolution:            x = UpSampling2D(size=(2, 2))(x)  # Nearest neighbor upsampling            x = ReflectionPadding2D((1, 1))(x)            x = Conv2D(filters=k, kernel_size=3, strides=1, padding='valid')(x)        else:            x = Conv2DTranspose(filters=k, kernel_size=3, strides=2, padding='same')(x)  # this matches fractinoally stided with stride 1/2        x = self.normalization(axis=3, center=True, epsilon=1e-5)(x, training=True)        x = Activation('relu')(x)        return x#===============================================================================# Models 
开发者ID:simontomaskarlsson,项目名称:CycleGAN-Keras,代码行数:16,代码来源:model.py


示例24: test_upsample

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling2D [as 别名]def test_upsample(self):        """        Test the conversion of 2D convolutional layer + upsample        """        from keras.layers import Convolution2D, UpSampling2D        # Create a simple Keras model        model = Sequential()        model.add(            Convolution2D(input_shape=(64, 64, 3), nb_filter=32, nb_row=5, nb_col=5)        )        model.add(UpSampling2D(size=(2, 2)))        input_names = ["input"]        output_names = ["output"]        spec = keras.convert(model, input_names, output_names).get_spec()        self.assertIsNotNone(spec)        # Test the model class        self.assertIsNotNone(spec.description)        self.assertTrue(spec.HasField("neuralNetwork"))        # Test the inputs and outputs        self.assertEquals(len(spec.description.input), len(input_names))        six.assertCountEqual(            self, input_names, [x.name for x in spec.description.input]        )        self.assertEquals(len(spec.description.output), len(output_names))        six.assertCountEqual(            self, output_names, [x.name for x in spec.description.output]        )        # Test the layer parameters.        layers = spec.neuralNetwork.layers        layer_0 = layers[0]        self.assertIsNotNone(layer_0.convolution)        layer_1 = layers[1]        self.assertIsNotNone(layer_1.upsample) 
开发者ID:apple,项目名称:coremltools,代码行数:39,代码来源:test_keras.py


示例25: convolution_image_for_decoding

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling2D [as 别名]def convolution_image_for_decoding(x, filters, upsample=None, name=None, n_layer=2):    for i in range(1, n_layer+1):        x = Convolution2D(filters, (3, 3), activation="elu", padding="same", name="%s/Conv%d" % (name, i))(x)    if upsample:        x = UpSampling2D()(x)    return x 
开发者ID:mokemokechicken,项目名称:keras_BEGAN,代码行数:8,代码来源:models.py


示例26: create_cnn

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling2D [as 别名]def create_cnn():    net = MobileNet(input_shape=(128,128,3), weights=None, include_top=False)    # upsampling(32->128)    input = Input((32,32,3))    x = UpSampling2D(4)(input)    x = net(x)    x = GlobalAveragePooling2D()(x)    x = Dense(10, activation="softmax")(x)    model = Model(input, x)    model.summary()    return model 
开发者ID:koshian2,项目名称:Pseudo-Label-Keras,代码行数:14,代码来源:mobilenet_pseudo_cifar.py


示例27: create_cnn

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling2D [as 别名]def create_cnn():    net = MobileNet(input_shape=(128,128,3), include_top=False)    # conv_pw_6から
Python layers.AveragePooling2D方法代码示例
Python layers.merge方法代码示例
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。