您当前的位置:首页 > IT编程 > Keras
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Python layers.GlobalMaxPooling2D方法代码示例

51自学网 2020-12-01 11:08:55
  Keras
这篇教程Python layers.GlobalMaxPooling2D方法代码示例写得很实用,希望能帮到您。

本文整理汇总了Python中keras.layers.GlobalMaxPooling2D方法的典型用法代码示例。如果您正苦于以下问题:Python layers.GlobalMaxPooling2D方法的具体用法?Python layers.GlobalMaxPooling2D怎么用?Python layers.GlobalMaxPooling2D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.layers的用法示例。

在下文中一共展示了layers.GlobalMaxPooling2D方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: channel_attention

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalMaxPooling2D [as 别名]def channel_attention(input_feature, ratio=8):		channel_axis = 1 if K.image_data_format() == "channels_first" else -1	channel = input_feature._keras_shape[channel_axis]		shared_layer_one = Dense(channel//ratio,							 activation='relu',							 kernel_initializer='he_normal',							 use_bias=True,							 bias_initializer='zeros')	shared_layer_two = Dense(channel,							 kernel_initializer='he_normal',							 use_bias=True,							 bias_initializer='zeros')		avg_pool = GlobalAveragePooling2D()(input_feature)    	avg_pool = Reshape((1,1,channel))(avg_pool)	assert avg_pool._keras_shape[1:] == (1,1,channel)	avg_pool = shared_layer_one(avg_pool)	assert avg_pool._keras_shape[1:] == (1,1,channel//ratio)	avg_pool = shared_layer_two(avg_pool)	assert avg_pool._keras_shape[1:] == (1,1,channel)		max_pool = GlobalMaxPooling2D()(input_feature)	max_pool = Reshape((1,1,channel))(max_pool)	assert max_pool._keras_shape[1:] == (1,1,channel)	max_pool = shared_layer_one(max_pool)	assert max_pool._keras_shape[1:] == (1,1,channel//ratio)	max_pool = shared_layer_two(max_pool)	assert max_pool._keras_shape[1:] == (1,1,channel)		cbam_feature = Add()([avg_pool,max_pool])	cbam_feature = Activation('sigmoid')(cbam_feature)		if K.image_data_format() == "channels_first":		cbam_feature = Permute((3, 1, 2))(cbam_feature)		return multiply([input_feature, cbam_feature]) 
开发者ID:kobiso,项目名称:CBAM-keras,代码行数:40,代码来源:attention_module.py


示例2: get_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalMaxPooling2D [as 别名]def get_model(base_model,               layer,               lr=1e-3,               input_shape=(224,224,1),               classes=2,              activation="softmax",              dropout=None,               pooling="avg",               weights=None,              pretrained="imagenet"):     base = base_model(input_shape=input_shape,                      include_top=False,                      weights=pretrained,                       channels="gray")     if pooling == "avg":         x = GlobalAveragePooling2D()(base.output)     elif pooling == "max":         x = GlobalMaxPooling2D()(base.output)     elif pooling is None:         x = Flatten()(base.output)     if dropout is not None:         x = Dropout(dropout)(x)     x = Dense(classes, activation=activation)(x)     model = Model(inputs=base.input, outputs=x)     if weights is not None:         model.load_weights(weights)     for l in model.layers[:layer]:        l.trainable = False     model.compile(loss="binary_crossentropy", metrics=["accuracy"],                   optimizer=optimizers.Adam(lr))     return model############ DATA ############# == PREPROCESSING == # 
开发者ID:i-pan,项目名称:kaggle-rsna18,代码行数:39,代码来源:TrainClassifierEnsemble.py


示例3: get_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalMaxPooling2D [as 别名]def get_model(base_model,               layer,               lr=1e-3,               input_shape=(224,224,1),               classes=2,              activation="softmax",              dropout=None,               pooling="avg",               weights=None,              pretrained=None):     base = base_model(input_shape=input_shape,                      include_top=False,                      weights=pretrained,                       channels="gray")     if pooling == "avg":         x = GlobalAveragePooling2D()(base.output)     elif pooling == "max":         x = GlobalMaxPooling2D()(base.output)     elif pooling is None:         x = Flatten()(base.output)     if dropout is not None:         x = Dropout(dropout)(x)     x = Dense(classes, activation=activation)(x)     model = Model(inputs=base.input, outputs=x)     if weights is not None:         model.load_weights(weights)     for l in model.layers[:layer]:        l.trainable = False     model.compile(loss="binary_crossentropy", metrics=["accuracy"],                   optimizer=optimizers.Adam(lr))     return model############ DATA ############# == PREPROCESSING == # 
开发者ID:i-pan,项目名称:kaggle-rsna18,代码行数:39,代码来源:PredictOneClassifier.py


示例4: test_global_max_pooling

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalMaxPooling2D [as 别名]def test_global_max_pooling(self):      model = Sequential()      model.add(GlobalMaxPooling2D(input_shape=(16, 16, 3)))      self._test_keras_model(model, has_variables = False) 
开发者ID:tf-coreml,项目名称:tf-coreml,代码行数:6,代码来源:test_tf_keras_layers.py


示例5: keypoint_confidence

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalMaxPooling2D [as 别名]def keypoint_confidence(x, name=None):    """Implements the keypoint (body joint) confidence, given a set of    probability maps as input. No parameters required.    """    def _keypoint_confidence(x):        x = 4 * AveragePooling2D((2, 2), strides=(1, 1))(x)        x = K.expand_dims(GlobalMaxPooling2D()(x), axis=-1)        return x    f = Lambda(_keypoint_confidence, name=name)    return TimeDistributed(f, name=name)(x) if K.ndim(x) == 5 else f(x) 
开发者ID:dluvizon,项目名称:deephar,代码行数:15,代码来源:layers.py


示例6: global_max_min_pooling

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalMaxPooling2D [as 别名]def global_max_min_pooling(x, name=None):    if 'global_max_min_pool_cnt' not in globals():        global global_max_min_pool_cnt        global_max_min_pool_cnt = 0    if name is None:        name = 'GlobalMaxMinPooling2D_%d' % global_max_min_pool_cnt        global_max_min_pool_cnt += 1    def _global_max_plus_min(x):        x1 = GlobalMaxPooling2D()(x)        x2 = GlobalMaxPooling2D()(-x)        return x1 - x2    return Lambda(_global_max_plus_min, name=name)(x) 
开发者ID:dluvizon,项目名称:deephar,代码行数:17,代码来源:layers.py


示例7: test_keras_import

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalMaxPooling2D [as 别名]def test_keras_import(self):        # Global Pooling 1D        model = Sequential()        model.add(GlobalMaxPooling1D(input_shape=(16, 1)))        model.build()        self.keras_param_test(model, 0, 5)        # Global Pooling 2D        model = Sequential()        model.add(GlobalMaxPooling2D(input_shape=(16, 16, 1)))        model.build()        self.keras_param_test(model, 0, 8)        # Pooling 1D        model = Sequential()        model.add(MaxPooling1D(pool_size=2, strides=2, padding='same', input_shape=(16, 1)))        model.build()        self.keras_param_test(model, 0, 5)        # Pooling 2D        model = Sequential()        model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same', input_shape=(16, 16, 1)))        model.build()        self.keras_param_test(model, 0, 8)        # Pooling 3D        model = Sequential()        model.add(MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), padding='same',                               input_shape=(16, 16, 16, 1)))        model.build()        self.keras_param_test(model, 0, 11)# ********** Locally-connected Layers ********** 
开发者ID:Cloud-CV,项目名称:Fabrik,代码行数:32,代码来源:test_views.py


示例8: enrich_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalMaxPooling2D [as 别名]def enrich_model(base_model, pooling, dropout, reg, n_classes, params, verbose):    # Init params if not done before    params = {} if params is None else params        # Loading appropriate params    params["pooling"] = select_param("pooling", pooling, params)    params["n_classes"] = select_param("n_classes", n_classes, params)    x = base_model.layers[-1].output            if params["pooling"] == 'None' :        x = Flatten()(x)    elif params["pooling"] == 'avg' :        x = GlobalAveragePooling2D()(x)    elif params["pooling"] == 'max' :        x = GlobalMaxPooling2D()(x)    if dropout is not None and dropout != 0.0 :        x = Dropout(dropout)(x)        if verbose:            print("Adding dropout to model with rate: {}".format(dropout))    regularizer = None    if reg is not None:        reg_l2 = reg["l2"]        reg_l1 = reg["l1"]        if (reg_l1 != 0.0) and (reg_l2 != 0.0) :            regularizer = regularizers.l1_l2(l1=reg_l1, l2=reg_l2)        if (reg_l1 == 0.0) and (reg_l2 != 0.0) :            regularizer = regularizers.l2(reg_l2)        if (reg_l1 != 0.0) and (reg_l2 == 0.0) :            regularizer = regularizers.l1(reg_l1)        if verbose:            print("Using regularizer for model: {}".format(reg))        predictions = Dense(params["n_classes"], activation='softmax', name='predictions', kernel_regularizer=regularizer)(x)    model = Model(input=base_model.input, output=predictions)    return model, params##################################################################################################################### GPU################################################################################################################### 
开发者ID:dataiku,项目名称:dataiku-contrib,代码行数:46,代码来源:dl_image_toolbox_utils.py


示例9: cnn

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalMaxPooling2D [as 别名]def cnn(embedding_matrix, dimx=50, dimy=50, nb_filter = 120,         embedding_dim = 50,filter_length = (50,4), vocab_size = 8000, depth = 1):    print 'Model Uses Basic CNN......'        inpx = Input(shape=(dimx,),dtype='int32',name='inpx')       inpy = Input(shape=(dimy,),dtype='int32',name='inpy')        x = word2vec_embedding_layer(embedding_matrix,train=False)(inpx)    y = word2vec_embedding_layer(embedding_matrix,train=False)(inpy)        x = Permute((2,1))(x)    y = Permute((2,1))(y)    conv1 = Reshape((embedding_dim,dimx,1))(x)    conv2 = Reshape((embedding_dim,dimy,1))(y)              channel_1, channel_2 = [], []        for dep in range(depth):                #conv1 = ZeroPadding2D((filter_width - 1, 0))(conv1)        #conv2 = ZeroPadding2D((filter_width - 1, 0))(conv2)                ques = Conv2D(nb_filter=nb_filter, kernel_size = filter_length, activation='relu',                data_format = 'channels_last',border_mode="valid")(conv1)        ans = Conv2D(nb_filter, kernel_size = filter_length, activation='relu',                data_format="channels_last",border_mode="valid")(conv2)                                        #conv1 = GlobalMaxPooling2D()(ques)        #conv2 = GlobalMaxPooling2D()(ans)        #conv1 = MaxPooling2D()(ques)        #conv2 = MaxPooling2D()(ans)                channel_1.append(GlobalMaxPooling2D()(ques))        channel_2.append(GlobalMaxPooling2D()(ans))                #channel_1.append(GlobalAveragePooling2D()(ques))        #channel_2.append(GlobalAveragePooling2D()(ans))        h1 = channel_1.pop(-1)    if channel_1:        h1 = merge([h1] + channel_1, mode="concat")    h2 = channel_2.pop(-1)    if channel_2:        h2 = merge([h2] + channel_2, mode="concat")        h =  Merge(mode="concat",name='h')([h1, h2])    #h = Dropout(0.2)(h)    #h = Dense(50, kernel_regularizer=regularizers.l2(reg2),activation='relu')(h)    #wrap = Dropout(0.5)(h)    #wrap = Dense(64, activation='tanh')(h)           score = Dense(2,activation='softmax',name='score')(h)    model = Model([inpx, inpy],[score])    model.compile( loss='categorical_crossentropy',optimizer='adam')        return model 
开发者ID:GauravBh1010tt,项目名称:DeepLearn,代码行数:63,代码来源:model.py


示例10: _add_auxilary_head

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalMaxPooling2D [as 别名]def _add_auxilary_head(x, classes, weight_decay, pooling, include_top):    '''Adds an auxilary head for training the model    From section A.7 "Training of ImageNet models" of the paper, all NASNet models are    trained using an auxilary classifier around 2/3 of the depth of the network, with    a loss weight of 0.4    # Arguments        x: input tensor        classes: number of output classes        weight_decay: l2 regularization weight    # Returns        a keras Tensor    '''    weights = load_auxilary_branch()    img_height = 1 if K.image_data_format() == 'channels_last' else 2    img_width = 2 if K.image_data_format() == 'channels_last' else 3    channel_axis = 1 if K.image_data_format() == 'channels_first' else -1    with K.name_scope('auxilary_branch'):        auxilary_x = Activation('relu')(x)        auxilary_x = AveragePooling2D((5, 5), strides=(3, 3), padding='valid', name='aux_pool')(auxilary_x)        auxilary_x = Conv2D(128, (1, 1), padding='same', use_bias=False, name='aux_conv_projection',                            kernel_initializer='he_normal', kernel_regularizer=l2(weight_decay),                            weights=[weights['conv1']])(auxilary_x)        auxilary_x = BatchNormalization(axis=channel_axis, momentum=_BN_DECAY, epsilon=_BN_EPSILON,                                        name='aux_bn_projection',                                        weights=weights['bn1'])(auxilary_x)        auxilary_x = Activation('relu')(auxilary_x)        auxilary_x = Conv2D(768, (auxilary_x._keras_shape[img_height], auxilary_x._keras_shape[img_width]),                            padding='valid', use_bias=False, kernel_initializer='he_normal',                            kernel_regularizer=l2(weight_decay), name='aux_conv_reduction',                            weights=[weights['conv2']])(auxilary_x)        auxilary_x = BatchNormalization(axis=channel_axis, momentum=_BN_DECAY, epsilon=_BN_EPSILON,                                        name='aux_bn_reduction',                                        weights=weights['bn2'])(auxilary_x)        auxilary_x = Activation('relu')(auxilary_x)        if include_top:            auxilary_x = GlobalAveragePooling2D()(auxilary_x)            auxilary_x = Dense(classes, activation='softmax', kernel_regularizer=l2(weight_decay),                                name='aux_predictions', weights=weights['fc'])(auxilary_x)        else:            if pooling == 'avg':                auxilary_x = GlobalAveragePooling2D()(auxilary_x)            elif pooling == 'max':                auxilary_x = GlobalMaxPooling2D()(auxilary_x)    return auxilary_x 
开发者ID:titu1994,项目名称:Keras-NASNet,代码行数:54,代码来源:nasnet.py


示例11: _add_auxiliary_head

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalMaxPooling2D [as 别名]def _add_auxiliary_head(x, classes, weight_decay, pooling, include_top):    '''Adds an auxiliary head for training the model    From section A.7 "Training of ImageNet models" of the paper, all NASNet models are    trained using an auxiliary classifier around 2/3 of the depth of the network, with    a loss weight of 0.4    # Arguments        x: input tensor        classes: number of output classes        weight_decay: l2 regularization weight    # Returns        a keras Tensor    '''    img_height = 1 if K.image_data_format() == 'channels_last' else 2    img_width = 2 if K.image_data_format() == 'channels_last' else 3    channel_axis = 1 if K.image_data_format() == 'channels_first' else -1    with K.name_scope('auxiliary_branch'):        auxiliary_x = Activation('relu')(x)        auxiliary_x = AveragePooling2D((5, 5), strides=(3, 3), padding='valid', name='aux_pool')(auxiliary_x)        auxiliary_x = Conv2D(128, (1, 1), padding='same', use_bias=False, name='aux_conv_projection',                            kernel_initializer='he_normal', kernel_regularizer=l2(weight_decay))(auxiliary_x)        auxiliary_x = BatchNormalization(axis=channel_axis, momentum=_BN_DECAY, epsilon=_BN_EPSILON,                                        name='aux_bn_projection')(auxiliary_x)        auxiliary_x = Activation('relu')(auxiliary_x)        auxiliary_x = Conv2D(768, (auxiliary_x._keras_shape[img_height], auxiliary_x._keras_shape[img_width]),                            padding='valid', use_bias=False, kernel_initializer='he_normal',                            kernel_regularizer=l2(weight_decay), name='aux_conv_reduction')(auxiliary_x)        auxiliary_x = BatchNormalization(axis=channel_axis, momentum=_BN_DECAY, epsilon=_BN_EPSILON,                                        name='aux_bn_reduction')(auxiliary_x)        auxiliary_x = Activation('relu')(auxiliary_x)        if include_top:            auxiliary_x = Flatten()(auxiliary_x)            auxiliary_x = Dense(classes, activation='softmax', kernel_regularizer=l2(weight_decay),                                name='aux_predictions')(auxiliary_x)        else:            if pooling == 'avg':                auxiliary_x = GlobalAveragePooling2D()(auxiliary_x)            elif pooling == 'max':                auxiliary_x = GlobalMaxPooling2D()(auxiliary_x)    return auxiliary_x 
开发者ID:titu1994,项目名称:Keras-NASNet,代码行数:48,代码来源:nasnet.py


示例12: classifier_block

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalMaxPooling2D [as 别名]def classifier_block(input_tensor, include_top=True, top='classification',                     classes=1, activation='sigmoid',                     input_shape=None, final_pooling=None, name='', verbose=1):    """ Performs the final Activation for the classification of a given problem.    # Arguments        include_top: Whether to include the fully-connected            layer at the top of the network. Also maps to require_flatten            option in `keras.applications.imagenet_utils._obtain_input_shape()`.    """    x = input_tensor    if include_top and top == 'classification':        if verbose:            print("    classification of x: " + str(x))        x = Dense(units=classes, activation=activation,                  kernel_initializer="he_normal", name=name + 'fc' + str(classes))(x)    elif include_top and top == 'segmentation':        if verbose > 0:            print("    segmentation of x: " + str(x))        x = Conv2D(classes, (1, 1), activation='linear', padding='same')(x)        if K.image_data_format() == 'channels_first':            channel, row, col = input_shape        else:            row, col, channel = input_shape        x = Reshape((row * col, classes))(x)        x = Activation(activation)(x)        x = Reshape((row, col, classes))(x)    elif include_top and top == 'quaternion':        x = Dense(units=classes, activation='linear',                  kernel_initializer="he_normal", name=name + 'fc' + str(classes))(x)        # normalize the output so we have a unit quaternion        x = Lambda(lambda x: K.l2_normalize(x, axis=1))(x)    elif final_pooling == 'avg':        if verbose:            print("    GlobalAveragePooling2D")        x = GlobalAveragePooling2D()(x)    elif final_pooling == 'max':        if verbose:            print("    GlobalMaxPooling2D")        x = GlobalMaxPooling2D()(x)    else:        raise ValueError('hypertree_model.py::classifier_block() unsupported top: ' + str(top))    return x 
开发者ID:jhu-lcsr,项目名称:costar_plan,代码行数:50,代码来源:hypertree_model.py


万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。