您当前的位置:首页 > IT编程 > Keras
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Python layers.Conv3D方法代码示例

51自学网 2020-12-01 11:08:59
  Keras
这篇教程Python layers.Conv3D方法代码示例写得很实用,希望能帮到您。

本文整理汇总了Python中keras.layers.Conv3D方法的典型用法代码示例。如果您正苦于以下问题:Python layers.Conv3D方法的具体用法?Python layers.Conv3D怎么用?Python layers.Conv3D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.layers的用法示例。

在下文中一共展示了layers.Conv3D方法的28个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: get_model_compiled

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Conv3D [as 别名]def get_model_compiled(shapeinput, num_class, w_decay=0, lr=1e-3):    clf = Sequential()    clf.add(Conv3D(32, kernel_size=(5, 5, 24), input_shape=shapeinput))    clf.add(BatchNormalization())    clf.add(Activation('relu'))    clf.add(Conv3D(64, (5, 5, 16)))    clf.add(BatchNormalization())    clf.add(Activation('relu'))    clf.add(MaxPooling3D(pool_size=(2, 2, 1)))    clf.add(Flatten())    clf.add(Dense(300, kernel_regularizer=regularizers.l2(w_decay)))    clf.add(BatchNormalization())    clf.add(Activation('relu'))    clf.add(Dense(num_class, activation='softmax'))    clf.compile(loss=categorical_crossentropy, optimizer=Adam(lr=lr), metrics=['accuracy'])    return clf 
开发者ID:mhaut,项目名称:hyperspectral_deeplearning_review,代码行数:18,代码来源:cnn3d.py


示例2: transition_layer_3D

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Conv3D [as 别名]def transition_layer_3D(input_tensor, numFilters, compressionFactor=1.0):    numOutPutFilters = int(numFilters*compressionFactor)    if K.image_data_format() == 'channels_last':        bn_axis = -1    else:        bn_axis = 1    x = BatchNormalization(axis=bn_axis)(input_tensor)    x = Activation('relu')(x)    x = Conv3D(numOutPutFilters, (1, 1, 1), strides=(1, 1, 1), padding='same', kernel_initializer='he_normal')(x)    # downsampling    x = AveragePooling3D((2, 2, 2), strides=(2, 2, 2), padding='valid', data_format='channels_last', name='')(x)    return x, numOutPutFilters 
开发者ID:thomaskuestner,项目名称:CNNArt,代码行数:20,代码来源:densely_connected_cnn_blocks.py


示例3: transition_SE_layer_3D

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Conv3D [as 别名]def transition_SE_layer_3D(input_tensor, numFilters, compressionFactor=1.0, se_ratio=16):    numOutPutFilters = int(numFilters*compressionFactor)    if K.image_data_format() == 'channels_last':        bn_axis = -1    else:        bn_axis = 1    x = BatchNormalization(axis=bn_axis)(input_tensor)    x = Activation('relu')(x)    x = Conv3D(numOutPutFilters, (1, 1, 1), strides=(1, 1, 1), padding='same', kernel_initializer='he_normal')(x)    # SE Block    x = squeeze_excitation_block_3D(x, ratio=se_ratio)    #x = BatchNormalization(axis=bn_axis)(x)    # downsampling    x = AveragePooling3D((2, 2, 2), strides=(2, 2, 2), padding='valid', data_format='channels_last', name='')(x)    #x = squeeze_excitation_block(x, ratio=se_ratio)    return x, numOutPutFilters 
开发者ID:thomaskuestner,项目名称:CNNArt,代码行数:26,代码来源:densely_connected_cnn_blocks.py


示例4: conv_block3

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Conv3D [as 别名]def conv_block3(n_filter, n1, n2, n3,                activation="relu",                border_mode="same",                dropout=0.0,                batch_norm=False,                init="glorot_uniform",                **kwargs):    def _func(lay):        if batch_norm:            s = Conv3D(n_filter, (n1, n2, n3), padding=border_mode, kernel_initializer=init, **kwargs)(lay)            s = BatchNormalization()(s)            s = Activation(activation)(s)        else:            s = Conv3D(n_filter, (n1, n2, n3), padding=border_mode, kernel_initializer=init, activation=activation, **kwargs)(lay)        if dropout is not None and dropout > 0:            s = Dropout(dropout)(s)        return s    return _func 
开发者ID:CSBDeep,项目名称:CSBDeep,代码行数:22,代码来源:blocks.py


示例5: denseblock

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Conv3D [as 别名]def denseblock(x, growth_rate, strides=(1, 1, 1), internal_layers=4,               dropout_rate=0., weight_decay=0.005):    x = Conv3D(growth_rate, (3, 3, 3),               kernel_initializer='he_normal',               padding="same",               strides=strides,               use_bias=False,               kernel_regularizer=l2(weight_decay))(x)    if dropout_rate:        x = Dropout(dropout_rate)(x)    list_feat = []    list_feat.append(x)    for i in range(internal_layers - 1):        x = conv_factory(x, growth_rate, dropout_rate, weight_decay)        list_feat.append(x)        x = concatenate(list_feat, axis=-1)    x = Conv3D(internal_layers * growth_rate, (1, 1, 1),               kernel_initializer='he_normal',               padding="same",               use_bias=False,               kernel_regularizer=l2(weight_decay))(x)    return x 
开发者ID:TianzhongSong,项目名称:3D-ConvNets-for-Action-Recognition,代码行数:24,代码来源:drn.py


示例6: model_thresholding

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Conv3D [as 别名]def model_thresholding():    IMAGE_ORDERING =  "channels_first"    img_input = Input(shape=(1,240,240,48))    conv_1 = Conv3D(filters=16,kernel_size=(3, 3, 3),padding='same',activation='relu',name = "CONV3D_1",dilation_rate=(2, 2, 2),data_format=IMAGE_ORDERING)(img_input)    maxpool_1 = MaxPool3D(name = "MAXPOOL3D_1",data_format=IMAGE_ORDERING)(conv_1)    conv_2 = Conv3D(filters=32,kernel_size=(3, 3, 3),padding='same',activation='relu',name = "CONV3D_2",dilation_rate=(2, 2, 2),data_format=IMAGE_ORDERING)(maxpool_1)    maxpool_2 = MaxPool3D(name = "MAXPOOL3D_2",data_format=IMAGE_ORDERING)(conv_2)    conv_3 = Conv3D(filters=32,kernel_size=(3, 3, 3),padding='same',activation='relu',name = "CONV3D_3",dilation_rate=(2, 2, 2),data_format=IMAGE_ORDERING)(maxpool_2)    convt_1 = Conv3DTranspose(16,kernel_size=(2,2,2),strides=(2,2,2),name = "CONV3DT_1",activation='relu',data_format=IMAGE_ORDERING)(conv_3)    concat_1 = Concatenate(axis=1)([convt_1,conv_2])    conv_4 = Conv3D(filters=16,kernel_size=(3, 3, 3),padding='same',activation='relu',name = "CONV3D_4",data_format=IMAGE_ORDERING)(concat_1)    convt_2 = Conv3DTranspose(4,kernel_size=(2,2,2),strides=(2,2,2),name = "CONV3DT_2",activation='relu',data_format=IMAGE_ORDERING)(conv_4)    concat_2 = Concatenate(axis=1)([convt_2,conv_1])    conv_5 = Conv3D(filters=1,kernel_size=(3, 3, 3),padding='same',activation='sigmoid',name = "CONV3D_5",data_format=IMAGE_ORDERING)(concat_2)    return Model(img_input, conv_5)    concat_2 = Concatenate(axis=1)([convt_2,conv_1])    conv_5 = Conv3D(filters=1,kernel_size=(3, 3, 3),padding='same',activation='sigmoid',name = "CONV3D_5",data_format=IMAGE_ORDERING)(concat_2)    return Model(img_input, conv_5) 
开发者ID:ubamba98,项目名称:Brain-Segmentation,代码行数:21,代码来源:model.py


示例7: _TTL

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Conv3D [as 别名]def _TTL(prev_layer):    # print('In _TTL')    b1 = BatchNormalization()(prev_layer)    b1 = Activation('relu')(b1)    # b1 = Conv3D(128, kernel_size=(1), strides=1, use_bias=False, padding='same')(b1)    b1 = Conv3D(128, kernel_size=(1, 3, 3), strides=1, use_bias=False, padding='same')(b1)    b2 = BatchNormalization()(prev_layer)    b2 = Activation('relu')(b2)    b2 = Conv3D(128, kernel_size=(3, 3, 3), strides=1, use_bias=False, padding='same')(b2)    b3 = BatchNormalization()(prev_layer)    b3 = Activation('relu')(b3)    b3 = Conv3D(128, kernel_size=(4, 3, 3), strides=1, use_bias=False, padding='same')(b3)    x = keras.layers.concatenate([b1, b2, b3], axis=1)    # print('completed _TTL')    return x 
开发者ID:rekon,项目名称:T3D-keras,代码行数:20,代码来源:T3D_keras.py


示例8: get_liveness_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Conv3D [as 别名]def get_liveness_model():    model = Sequential()    model.add(Conv3D(32, kernel_size=(3, 3, 3),                    activation='relu',                    input_shape=(24,100,100,1)))    model.add(Conv3D(64, (3, 3, 3), activation='relu'))    model.add(MaxPooling3D(pool_size=(2, 2, 2)))    model.add(Conv3D(64, (3, 3, 3), activation='relu'))    model.add(MaxPooling3D(pool_size=(2, 2, 2)))    model.add(Conv3D(64, (3, 3, 3), activation='relu'))    model.add(MaxPooling3D(pool_size=(2, 2, 2)))    model.add(Dropout(0.25))    model.add(Flatten())    model.add(Dense(128, activation='relu'))    model.add(Dropout(0.5))    model.add(Dense(2, activation='softmax'))    return model 
开发者ID:AhmetHamzaEmra,项目名称:Intelegent_Lock,代码行数:21,代码来源:livenessmodel.py


示例9: conv3d_bn

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Conv3D [as 别名]def conv3d_bn(x, filters, num_frames, num_row, num_col, padding='same', strides=(1, 1, 1), use_bias=False, use_activation_fn=True, use_bn=True, name=None):    """Utility function to apply conv3d + BN.    # Arguments        x: input tensor.        filters: filters in `Conv3D`.        num_frames: frames (time depth) of the convolution kernel.        num_row: height of the convolution kernel.        num_col: width of the convolution kernel.        padding: padding mode in `Conv3D`.        strides: strides in `Conv3D`.        use_bias: use bias or not        use_activation_fn: use an activation function or not.        use_bn: use batch normalization or not.        name: name of the ops; will become `name + '_conv'`            for the convolution and `name + '_bn'` for the            batch norm layer.    # Returns        Output tensor after applying `Conv3D` and `BatchNormalization`.    """    if name is not None:        bn_name = name + '_bn'        conv_name = name + '_conv'    else:        bn_name = None        conv_name = None    x = Conv3D(filters, (num_frames, num_row, num_col), strides=strides, padding=padding, use_bias=use_bias, name=conv_name)(x)    if use_bn:        if K.image_data_format() == 'channels_first':            bn_axis = 1        else:            bn_axis = 4        x = BatchNormalization(axis=bn_axis, scale=False, name=bn_name)(x)    if use_activation_fn:        x = Activation('relu', name=name)(x)    return x 
开发者ID:CMU-CREATE-Lab,项目名称:deep-smoke-machine,代码行数:43,代码来源:i3d_keras.py


示例10: __temporal_convolutional_block

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Conv3D [as 别名]def __temporal_convolutional_block(tensor, n_channels_per_branch, kernel_sizes, dilation_rates, layer_num, group_num):    """    Define 5 branches of convolutions that operate of channels of each group.    """    # branch 1: dimension reduction only and no temporal conv    t_1 = Conv3D(n_channels_per_branch, kernel_size=(1, 1, 1), padding='same', name='conv_b1_g%d_tc%d' % (group_num, layer_num))(tensor)    t_1 = BatchNormalization(name='bn_b1_g%d_tc%d' % (group_num, layer_num))(t_1)    # branch 2: dimension reduction followed by depth-wise temp conv (kernel-size 3)    t_2 = Conv3D(n_channels_per_branch, kernel_size=(1, 1, 1), padding='same', name='conv_b2_g%d_tc%d' % (group_num, layer_num))(tensor)    t_2 = DepthwiseConv1DLayer(kernel_sizes[0], dilation_rates[0], padding='same', name='convdw_b2_g%d_tc%d' % (group_num, layer_num))(t_2)    t_2 = BatchNormalization(name='bn_b2_g%d_tc%d' % (group_num, layer_num))(t_2)    # branch 3: dimension reduction followed by depth-wise temp conv (kernel-size 5)    t_3 = Conv3D(n_channels_per_branch, kernel_size=(1, 1, 1), padding='same', name='conv_b3_g%d_tc%d' % (group_num, layer_num))(tensor)    t_3 = DepthwiseConv1DLayer(kernel_sizes[1], dilation_rates[1], padding='same', name='convdw_b3_g%d_tc%d' % (group_num, layer_num))(t_3)    t_3 = BatchNormalization(name='bn_b3_g%d_tc%d' % (group_num, layer_num))(t_3)    # branch 4: dimension reduction followed by depth-wise temp conv (kernel-size 7)    t_4 = Conv3D(n_channels_per_branch, kernel_size=(1, 1, 1), padding='same', name='conv_b4_g%d_tc%d' % (group_num, layer_num))(tensor)    t_4 = DepthwiseConv1DLayer(kernel_sizes[2], dilation_rates[2], padding='same', name='convdw_b4_g%d_tc%d' % (group_num, layer_num))(t_4)    t_4 = BatchNormalization(name='bn_b4_g%d_tc%d' % (group_num, layer_num))(t_4)    # branch 5: dimension reduction followed by temporal max pooling    t_5 = Conv3D(n_channels_per_branch, kernel_size=(1, 1, 1), padding='same', name='conv_b5_g%d_tc%d' % (group_num, layer_num))(tensor)    t_5 = MaxPooling3D(pool_size=(2, 1, 1), strides=(1, 1, 1), padding='same', name='maxpool_b5_g%d_tc%d' % (group_num, layer_num))(t_5)    t_5 = BatchNormalization(name='bn_b5_g%d_tc%d' % (group_num, layer_num))(t_5)    # concatenate channels of branches    tensor = Concatenate(axis=4, name='concat_g%d_tc%d' % (group_num, layer_num))([t_1, t_2, t_3, t_4, t_5])    return tensor 
开发者ID:CMU-CREATE-Lab,项目名称:deep-smoke-machine,代码行数:35,代码来源:timeception.py


示例11: makecnn

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Conv3D [as 别名]def makecnn(learningrate,regular,decay,channel_number):    #model structure    model=Sequential()    model.add(Conv3D(100, kernel_size=(3,3,3), strides=(1, 1, 1), input_shape = (20,20,20,channel_number),padding='valid', data_format='channels_last', dilation_rate=(1, 1, 1),  use_bias=True, kernel_initializer='glorot_normal', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=l2(regular), kernel_constraint=None, bias_constraint=None))    model.add(BatchNormalization())    model.add(LeakyReLU(0.2))    #model.add(Dropout(0.3))    model.add(Conv3D(200, kernel_size=(3,3,3), strides=(1, 1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1, 1), use_bias=True, kernel_initializer='glorot_normal', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=l2(regular), kernel_constraint=None, bias_constraint=None))    model.add(BatchNormalization())    model.add(LeakyReLU(0.2))    #model.add(Dropout(0.3))    model.add(MaxPooling3D(pool_size=(2, 2, 2), strides=None, padding='valid', data_format='channels_last'))    model.add(BatchNormalization(axis=1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer='zeros', gamma_initializer='ones', moving_mean_initializer='zeros', moving_variance_initializer='ones', beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None))    model.add(Conv3D(400, kernel_size=(3,3,3),strides=(1, 1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1, 1), use_bias=True, kernel_initializer='glorot_normal', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=l2(regular), kernel_constraint=None, bias_constraint=None))    model.add(BatchNormalization())    model.add(LeakyReLU(0.2))    #model.add(Dropout(0.3))    model.add(MaxPooling3D(pool_size=(2, 2, 2), strides=None, padding='valid', data_format='channels_last'))    model.add(Flatten())    model.add(Dropout(0.3))    model.add(Dense(1000, use_bias=True, input_shape = (32000,),kernel_initializer='glorot_normal', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=l2(regular), kernel_constraint=None, bias_constraint=None))    model.add(BatchNormalization())    model.add(LeakyReLU(0.2))    model.add(Dropout(0.3))    model.add(Dense(100, use_bias=True, kernel_initializer='glorot_normal', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=l2(regular), kernel_constraint=None, bias_constraint=None))    model.add(BatchNormalization())    model.add(LeakyReLU(0.2))    model.add(Dropout(0.3))    model.add(Dense(1, activation='sigmoid', use_bias=True, kernel_initializer='glorot_normal', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=l2(regular), kernel_constraint=None, bias_constraint=None))    nadam=Nadam(lr=learningrate, beta_1=0.9, beta_2=0.999, epsilon=1e-08, schedule_decay=decay)    model.compile(loss='binary_crossentropy', optimizer=nadam, metrics=['accuracy',f1score,precision,recall])    return model 
开发者ID:kiharalab,项目名称:DOVE,代码行数:39,代码来源:Build_Model.py


示例12: _convND

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Conv3D [as 别名]def _convND(ip, rank, channels, kernel=1):    assert rank in [3, 4, 5], "Rank of input must be 3, 4 or 5"    if rank == 3:        x = Conv1D(channels, kernel, padding='same', use_bias=False, kernel_initializer='he_normal')(ip)    elif rank == 4:        x = Conv2D(channels, (kernel, kernel), padding='same', use_bias=False, kernel_initializer='he_normal')(ip)    else:        x = Conv3D(channels, (kernel, kernel, kernel), padding='same', use_bias=False, kernel_initializer='he_normal')(ip)    return x 
开发者ID:titu1994,项目名称:keras-global-context-networks,代码行数:13,代码来源:gc.py


示例13: Unet

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Conv3D [as 别名]def Unet(input_shape, n_labels, n_filters=32, depth=4, activation='sigmoid'):    # Input layer    inputs = Input(input_shape)    # Start the CNN Model chain with adding the inputs as first tensor    cnn_chain = inputs    # Cache contracting normalized conv layers    # for later copy & concatenate links    contracting_convs = []    # Contracting Layers    for i in range(0, depth):        neurons = n_filters * 2**i        cnn_chain, last_conv = contracting_layer(cnn_chain, neurons)        contracting_convs.append(last_conv)    # Middle Layer    neurons = n_filters * 2**depth    cnn_chain = middle_layer(cnn_chain, neurons)    # Expanding Layers    for i in reversed(range(0, depth)):        neurons = n_filters * 2**i        cnn_chain = expanding_layer(cnn_chain, neurons, contracting_convs[i])    # Output Layer    conv_out = Conv3D(n_labels, (1, 1, 1), activation=activation)(cnn_chain)    # Create Model with associated input and output layers    model = Model(inputs=[inputs], outputs=[conv_out])    # Return model    return model#-----------------------------------------------------##                     Subroutines                     ##-----------------------------------------------------## Create a contracting layer 
开发者ID:muellerdo,项目名称:kits19.MIScnn,代码行数:37,代码来源:residual.py


示例14: contracting_layer

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Conv3D [as 别名]def contracting_layer(input, neurons):    conv1 = Conv3D(neurons, (3,3,3), activation='relu', padding='same')(input)    conv2 = Conv3D(neurons, (3,3,3), activation='relu', padding='same')(conv1)    conc1 = concatenate([input, conv2], axis=4)    pool = MaxPooling3D(pool_size=(2, 2, 2))(conc1)    return pool, conv2# Create the middle layer between the contracting and expanding layers 
开发者ID:muellerdo,项目名称:kits19.MIScnn,代码行数:10,代码来源:residual.py


示例15: middle_layer

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Conv3D [as 别名]def middle_layer(input, neurons):    conv_m1 = Conv3D(neurons, (3, 3, 3), activation='relu', padding='same')(input)    conv_m2 = Conv3D(neurons, (3, 3, 3), activation='relu', padding='same')(conv_m1)    conc1 = concatenate([input, conv_m2], axis=4)    return conc1# Create an expanding layer 
开发者ID:muellerdo,项目名称:kits19.MIScnn,代码行数:9,代码来源:residual.py


示例16: expanding_layer

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Conv3D [as 别名]def expanding_layer(input, neurons, concatenate_link):    up = concatenate([Conv3DTranspose(neurons, (2, 2, 2), strides=(2, 2, 2),                     padding='same')(input), concatenate_link], axis=4)    conv1 = Conv3D(neurons, (3, 3, 3), activation='relu', padding='same')(up)    conv2 = Conv3D(neurons, (3, 3, 3), activation='relu', padding='same')(conv1)    conc1 = concatenate([up, conv2], axis=4)    return conc1 
开发者ID:muellerdo,项目名称:kits19.MIScnn,代码行数:9,代码来源:residual.py


示例17: conv3d_bn

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Conv3D [as 别名]def conv3d_bn(x, filters, num_row, num_col, num_z, padding='same', strides=(1, 1, 1), activation='relu', name=None):    '''    3D Convolutional layers    Arguments:        x {keras layer} -- input layer        filters {int} -- number of filters        num_row {int} -- number of rows in filters        num_col {int} -- number of columns in filters        num_z {int} -- length along z axis in filters    Keyword Arguments:        padding {str} -- mode of padding (default: {'same'})        strides {tuple} -- stride of convolution operation (default: {(1, 1, 1)})        activation {str} -- activation function (default: {'relu'})        name {str} -- name of the layer (default: {None})    Returns:        [keras layer] -- [output layer]    '''    x = Conv3D(filters, (num_row, num_col, num_z), strides=strides, padding=padding, use_bias=False)(x)    x = BatchNormalization(axis=4, scale=False)(x)    if(activation==None):        return x    x = Activation(activation, name=name)(x)    return x 
开发者ID:muellerdo,项目名称:kits19.MIScnn,代码行数:30,代码来源:multiRes.py


示例18: contracting_layer

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Conv3D [as 别名]def contracting_layer(input, neurons):    conv1 = Conv3D(neurons, (3,3,3), activation='relu', padding='same')(input)    conv2 = Conv3D(neurons, (3,3,3), activation='relu', padding='same')(conv1)    pool = MaxPooling3D(pool_size=(2, 2, 2))(conv2)    return pool, conv2# Create the middle layer between the contracting and expanding layers 
开发者ID:muellerdo,项目名称:kits19.MIScnn,代码行数:9,代码来源:standard.py


示例19: middle_layer

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Conv3D [as 别名]def middle_layer(input, neurons):    conv_m1 = Conv3D(neurons, (3, 3, 3), activation='relu', padding='same')(input)    conv_m2 = Conv3D(neurons, (3, 3, 3), activation='relu', padding='same')(conv_m1)    return conv_m2# Create an expanding layer 
开发者ID:muellerdo,项目名称:kits19.MIScnn,代码行数:8,代码来源:standard.py


示例20: expanding_layer

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Conv3D [as 别名]def expanding_layer(input, neurons, concatenate_link):    up = concatenate([Conv3DTranspose(neurons, (2, 2, 2), strides=(2, 2, 2),                     padding='same')(input), concatenate_link], axis=4)    conv1 = Conv3D(neurons, (3, 3, 3), activation='relu', padding='same')(up)    conv2 = Conv3D(neurons, (3, 3, 3), activation='relu', padding='same')(conv1)    return conv2 
开发者ID:muellerdo,项目名称:kits19.MIScnn,代码行数:8,代码来源:standard.py


示例21: get_model_compiled

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Conv3D [as 别名]def get_model_compiled(args, inputshape, num_class):    model = Sequential()    if args.arch == "CNN1D":        model.add(Conv1D(20, (24), activation='relu', input_shape=inputshape))        model.add(MaxPooling1D(pool_size=5))        model.add(Flatten())        model.add(Dense(100))    elif "CNN2D" in args.arch:        model.add(Conv2D(50, kernel_size=(5, 5), input_shape=inputshape))        model.add(Activation('relu'))        model.add(Conv2D(100, (5, 5)))        model.add(Activation('relu'))        model.add(MaxPooling2D(pool_size=(2, 2)))        model.add(Flatten())        model.add(Dense(100))    elif args.arch == "CNN3D":        model.add(Conv3D(32, kernel_size=(5, 5, 24), input_shape=inputshape))        model.add(BatchNormalization())        model.add(Activation('relu'))        model.add(Conv3D(64, (5, 5, 16)))        model.add(BatchNormalization())        model.add(Activation('relu'))        model.add(MaxPooling3D(pool_size=(2, 2, 1)))        model.add(Flatten())        model.add(Dense(300))    if args.arch != "CNN2D": model.add(BatchNormalization())    model.add(Activation('relu'))    model.add(Dense(num_class, activation='softmax'))    model.compile(loss=categorical_crossentropy, optimizer=Adam(args.lr1), metrics=['accuracy'])     return model 
开发者ID:mhaut,项目名称:hyperspectral_deeplearning_review,代码行数:32,代码来源:transfer_learning.py


示例22: test_conv3d

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Conv3D [as 别名]def test_conv3d(self):        keras_model = Sequential()        keras_model.add(Conv3D(8, (5, 5, 5), input_shape=(3, 8, 8, 8),                               name='conv'))        keras_model.compile(loss=keras.losses.categorical_crossentropy,                            optimizer=keras.optimizers.SGD())        pytorch_model = Conv3DNet()        self.transfer(keras_model, pytorch_model)        self.assertEqualPrediction(keras_model,                                   pytorch_model,                                   self.test_data_3d,                                   delta=1e-4) 
开发者ID:gzuidhof,项目名称:nn-transfer,代码行数:16,代码来源:test_layers.py


示例23: DenseNetUnit3D

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Conv3D [as 别名]def DenseNetUnit3D(x, growth_rate, ksize, n, bn_decay=0.99):    for i in range(n):        concat = x        x = BatchNormalization(center=True, scale=True, momentum=bn_decay)(x)        x = Activation('relu')(x)        x = Conv3D(filters=growth_rate, kernel_size=ksize, padding='same', kernel_initializer='he_uniform',                   use_bias=False)(x)        x = concatenate([concat, x])    return x 
开发者ID:lelechen63,项目名称:MRI-tumor-segmentation-Brats,代码行数:11,代码来源:test.py


示例24: DenseNetTransit

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Conv3D [as 别名]def DenseNetTransit(x, rate=1, name=None):    if rate != 1:        out_features = x.get_shape().as_list()[-1] * rate        x = BatchNormalization(center=True, scale=True, name=name + '_bn')(x)        x = Activation('relu', name=name + '_relu')(x)        x = Conv3D(filters=out_features, kernel_size=1, strides=1, padding='same', kernel_initializer='he_normal',                   use_bias=False, name=name + '_conv')(x)    x = AveragePooling3D(pool_size=2, strides=2, padding='same')(x)    return x 
开发者ID:lelechen63,项目名称:MRI-tumor-segmentation-Brats,代码行数:11,代码来源:test.py


示例25: dense_net

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Conv3D [as 别名]def dense_net(input):    x = Conv3D(filters=24, kernel_size=3, strides=1, kernel_initializer='he_uniform', padding='same', use_bias=False)(        input)    x = DenseNetUnit3D(x, growth_rate=12, ksize=3, n=4)    x = DenseNetTransit(x)    x = DenseNetUnit3D(x, growth_rate=12, ksize=3, n=4)    x = DenseNetTransit(x)    x = DenseNetUnit3D(x, growth_rate=12, ksize=3, n=4)    x = BatchNormalization()(x)    x = Activation('relu')(x)    return x 
开发者ID:lelechen63,项目名称:MRI-tumor-segmentation-Brats,代码行数:13,代码来源:test.py


示例26: dense_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Conv3D [as 别名]def dense_model(patch_size, num_classes):    merged_inputs = Input(shape=patch_size + (4,), name='merged_inputs')    flair = Reshape(patch_size + (1,))(        Lambda(            lambda l: l[:, :, :, :, 0],            output_shape=patch_size + (1,))(merged_inputs),    )    t2 = Reshape(patch_size + (1,))(        Lambda(lambda l: l[:, :, :, :, 1], output_shape=patch_size + (1,))(merged_inputs)    )    t1 = Lambda(lambda l: l[:, :, :, :, 2:], output_shape=patch_size + (2,))(merged_inputs)    flair = dense_net(flair)    t2 = dense_net(t2)    t1 = dense_net(t1)    t2 = concatenate([flair, t2])    t1 = concatenate([t2, t1])    tumor = Conv3D(2, kernel_size=1, strides=1, name='tumor')(flair)    core = Conv3D(3, kernel_size=1, strides=1, name='core')(t2)    enhancing = Conv3D(num_classes, kernel_size=1, strides=1, name='enhancing')(t1)    net = Model(inputs=merged_inputs, outputs=[tumor, core, enhancing])    return net 
开发者ID:lelechen63,项目名称:MRI-tumor-segmentation-Brats,代码行数:28,代码来源:test.py


示例27: nn_architecture_seg_3d

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Conv3D [as 别名]def nn_architecture_seg_3d(input_shape, pool_size=(2, 2, 2), n_labels=1, initial_learning_rate=0.00001,                        depth=3, n_base_filters=16, metrics=dice_coefficient, batch_normalization=True):    inputs = Input(input_shape)    current_layer = inputs    levels = list()    for layer_depth in range(depth):        layer1 = create_convolution_block(input_layer=current_layer, n_filters=n_base_filters * (2**layer_depth),                                          batch_normalization=batch_normalization)        layer2 = create_convolution_block(input_layer=layer1, n_filters=n_base_filters * (2**layer_depth) * 2,                                          batch_normalization=batch_normalization)        if layer_depth < depth - 1:            current_layer = MaxPooling3D(pool_size=pool_size)(layer2)            levels.append([layer1, layer2, current_layer])        else:            current_layer = layer2            levels.append([layer1, layer2])    for layer_depth in range(depth - 2, -1, -1):        up_convolution = UpSampling3D(size=pool_size)        concat = concatenate([up_convolution, levels[layer_depth][1]], axis=1)        current_layer = create_convolution_block(n_filters=levels[layer_depth][1]._keras_shape[1],                                                 input_layer=concat, batch_normalization=batch_normalization)        current_layer = create_convolution_block(n_filters=levels[layer_depth][1]._keras_shape[1],                                                 input_layer=current_layer,                                                 batch_normalization=batch_normalization)    final_convolution = Conv3D(n_labels, (1, 1, 1))(current_layer)    act = Activation('sigmoid')(final_convolution)    model = Model(inputs=inputs, outputs=act)    if not isinstance(metrics, list):        metrics = [metrics]    model.compile(optimizer=Adam(lr=initial_learning_rate), loss=dice_coefficient_loss, metrics=metrics)    return model 
开发者ID:neuropoly,项目名称:spinalcordtoolbox,代码行数:38,代码来源:cnn_models_3d.py


示例28: create_convolution_block

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Conv3D [as 别名]def create_convolution_block(input_layer, n_filters, batch_normalization=False,                            kernel=(3, 3, 3), activation=None, padding='same',                            strides=(1, 1, 1)):    layer = Conv3D(n_filters, kernel, padding=padding, strides=strides)(input_layer)    if batch_normalization:        layer = BatchNormalization(axis=1)(layer)    if activation is None:        return Activation('relu')(layer)    else:        return activation()(layer) 
开发者ID:neuropoly,项目名称:spinalcordtoolbox,代码行数:13,代码来源:cnn_models_3d.py


万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。