您当前的位置:首页 > IT编程 > Keras
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Python layers.Multiply方法代码示例

51自学网 2020-12-01 11:09:00
  Keras
这篇教程Python layers.Multiply方法代码示例写得很实用,希望能帮到您。

本文整理汇总了Python中keras.layers.Multiply方法的典型用法代码示例。如果您正苦于以下问题:Python layers.Multiply方法的具体用法?Python layers.Multiply怎么用?Python layers.Multiply使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.layers的用法示例。

在下文中一共展示了layers.Multiply方法的21个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: get_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Multiply [as 别名]def get_model(num_users, num_items, latent_dim, regs=[0,0]):    user_input = Input(shape=(1,), dtype='int32', name='user_input')    item_input = Input(shape=(1,), dtype='int32', name='item_input')        MF_Embedding_User = Embedding(input_dim=num_users, output_dim=latent_dim, name='user_embedding',                                  embeddings_regularizer = l2(regs[0]), input_length=1)    MF_Embedding_Item = Embedding(input_dim=num_items, output_dim=latent_dim, name='item_embedding',                                  embeddings_regularizer = l2(regs[1]), input_length=1)        user_latent = Flatten()(MF_Embedding_User(user_input))    item_latent = Flatten()(MF_Embedding_Item(item_input))        predict_vector = Multiply()([user_latent, item_latent])    prediction = Dense(1, activation='sigmoid', kernel_initializer='lecun_uniform', name = 'prediction')(predict_vector)    model = Model(inputs=[user_input, item_input], outputs=prediction)        return model 
开发者ID:wyl6,项目名称:Recommender-Systems-Samples,代码行数:19,代码来源:GMF.py


示例2: _squeeze

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Multiply [as 别名]def _squeeze(self, inputs):        """Squeeze and Excitation.        This function defines a squeeze structure.        # Arguments            inputs: Tensor, input tensor of conv layer.        """        input_channels = int(inputs.shape[-1])        x = GlobalAveragePooling2D()(inputs)        x = Dense(input_channels, activation='relu')(x)        x = Dense(input_channels, activation='hard_sigmoid')(x)        x = Reshape((1, 1, input_channels))(x)        x = Multiply()([inputs, x])        return x 
开发者ID:xiaochus,项目名称:MobileNetV3,代码行数:18,代码来源:mobilenet_base.py


示例3: test_merge_multiply

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Multiply [as 别名]def test_merge_multiply():    i1 = layers.Input(shape=(4, 5))    i2 = layers.Input(shape=(4, 5))    i3 = layers.Input(shape=(4, 5))    o = layers.multiply([i1, i2, i3])    assert o._keras_shape == (None, 4, 5)    model = models.Model([i1, i2, i3], o)    mul_layer = layers.Multiply()    o2 = mul_layer([i1, i2, i3])    assert mul_layer.output_shape == (None, 4, 5)    x1 = np.random.random((2, 4, 5))    x2 = np.random.random((2, 4, 5))    x3 = np.random.random((2, 4, 5))    out = model.predict([x1, x2, x3])    assert out.shape == (2, 4, 5)    assert_allclose(out, x1 * x2 * x3, atol=1e-4) 
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:20,代码来源:merge_test.py


示例4: model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Multiply [as 别名]def model(self):    inputs_img = Input(shape=(self.img_height, self.img_width, self.num_channels))    inputs_mask = Input(shape=(self.img_height, self.img_width, self.num_channels))        inputs = Multiply()([inputs_img, inputs_mask])        # Local discriminator    l_dis = Conv2D(filters=64, kernel_size=5, strides=(2, 2), padding='same')(inputs)    l_dis = LeakyReLU()(l_dis)    l_dis = Conv2D(filters=128, kernel_size=5, strides=(2, 2), padding='same')(l_dis)    l_dis = LeakyReLU()(l_dis)    l_dis = Conv2D(filters=256, kernel_size=5, strides=(2, 2), padding='same')(l_dis)    l_dis = LeakyReLU()(l_dis)    l_dis = Conv2D(filters=512, kernel_size=5, strides=(2, 2), padding='same')(l_dis)    l_dis = LeakyReLU()(l_dis)    l_dis = Conv2D(filters=256, kernel_size=5, strides=(2, 2), padding='same')(l_dis)    l_dis = LeakyReLU()(l_dis)    l_dis = Conv2D(filters=128, kernel_size=5, strides=(2, 2), padding='same')(l_dis)    l_dis = LeakyReLU()(l_dis)    l_dis = Flatten()(l_dis)    l_dis = Dense(units=1)(l_dis)        model = Model(name=self.model_name, inputs=[inputs_img, inputs_mask], outputs=l_dis)    return model 
开发者ID:tlatkowski,项目名称:inpainting-gmcnn-keras,代码行数:26,代码来源:discriminator.py


示例5: joint_branch

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Multiply [as 别名]def joint_branch(self, trainable=True, softmax_trainable=False):        """        joint branch of detection and classification        :param trainable: unfreeze detection branch layer if set to true        """        input_img = Input(shape=self.input_shape)        x_future_det_one, x_future_cls_det_two = self.share_layer(input_img, trainable=trainable)        x_detection = self.detection_branch_wrapper(x_future_det_one, x_future_cls_det_two, trainable=trainable,                                                    softmax_trainable=softmax_trainable)        x_classification = self.classification_branch_wrapper(x_future_cls_det_two,                                                              softmax_trainable=softmax_trainable)        joint_x = Multiply()([x_detection, x_classification], name='joint_multiply_layer')        input_img = Input(shape=self.input_shape)        joint_model = Model(inputs=input_img,                            outputs=joint_x)        return joint_model 
开发者ID:zhuyiche,项目名称:sfcn-opi,代码行数:19,代码来源:model.py


示例6: GMF_get_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Multiply [as 别名]def GMF_get_model(num_users, num_items, latent_dim, regs=[0,0]):    # Input variables    user_input = Input(shape=(1,), dtype='int32', name = 'user_input')    item_input = Input(shape=(1,), dtype='int32', name = 'item_input')    MF_Embedding_User = Embedding(input_dim = num_users, output_dim = latent_dim, name = 'user_embedding',                                  embeddings_initializer = 'random_normal', embeddings_regularizer = l2(regs[0]), input_length=1)    MF_Embedding_Item = Embedding(input_dim = num_items, output_dim = latent_dim, name = 'item_embedding',                                  embeddings_initializer = 'random_normal', embeddings_regularizer = l2(regs[1]), input_length=1)    # Crucial to flatten an embedding vector!    user_latent = Flatten()(MF_Embedding_User(user_input))    item_latent = Flatten()(MF_Embedding_Item(item_input))    # Element-wise product of user and item embeddings    predict_vector = Multiply()([user_latent, item_latent])    # Final prediction layer    prediction = Dense(1, activation='sigmoid', kernel_initializer='lecun_uniform', name = 'prediction')(predict_vector)    model = Model(inputs=[user_input, item_input],                outputs=prediction)    return model 
开发者ID:MaurizioFD,项目名称:RecSys2019_DeepLearning_Evaluation,代码行数:26,代码来源:NeuMF_RecommenderWrapper.py


示例7: prepare_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Multiply [as 别名]def prepare_model(ninputs=9600, n_feats=45,nclass=4,n_tfidf=10001):    inp1 = Input(shape=(ninputs,))    inp2 = Input(shape=(n_feats,))    inp3 = Input(shape=(n_tfidf,))    reg = 0.00005    out_neurons1 = 500    #out_neurons2 = 20    #out_neurons2 = 10    m1 = Dense(input_dim=ninputs, output_dim=out_neurons1,activation='sigmoid'/                      ,kernel_regularizer=regularizers.l2(0.00000001))(inp1)    m1 = Dropout(0.2)(m1)    m1 = Dense(100,activation='sigmoid')(m1)    #m1 = Dropout(0.2)(m1)    #m1 = Dense(4, activation='sigmoid')(m1)        #m2 = Dense(input_dim=n_feats, output_dim=n_feats,activation='relu')(inp2)    m2 = Dense(50,activation='relu')(inp2)    #m2=Dense(4,activation='relu')(m2)        m3 = Dense(500, input_dim=n_tfidf, activation='relu',/                    kernel_regularizer=regularizers.l2(reg))(inp3)        m3 = Dropout(0.4)(m3)    m3 = Dense(50, activation='relu')(m3)    #m3 = Dropout(0.4)(m3)    #m3 = Dense(4, activation='softmax')(m3)            #m1 = Dense(input_dim=ninputs, output_dim=out_neurons2,activation='sigmoid')(m1)    #m2 = Dense(input_dim=ninputs, output_dim=out_neurons2,activation='softmax')(m2)        m = Merge(mode='concat')([m1,m2,m3])        #mul = Multiply()([m1,m2])    #add = Abs()([m1,m2])    #m = Merge(mode='concat')([mul,add])        score = Dense(output_dim=nclass,activation='softmax')(m)    model = Model([inp1,inp2,inp3],score)    model.compile(loss='categorical_crossentropy', optimizer='adam')    return model 
开发者ID:GauravBh1010tt,项目名称:DeepLearn,代码行数:43,代码来源:eval_fnc.py


示例8: prepare_model2

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Multiply [as 别名]def prepare_model2(ninputs=9600, n_feats=45,nclass=4,n_tfidf=10001):    inp1 = Input(shape=(ninputs,))    inp2 = Input(shape=(n_feats,))    inp3 = Input(shape=(n_tfidf,))    reg = 0.00005    out_neurons1 = 500    #out_neurons2 = 20    #out_neurons2 = 10    m1 = Dense(input_dim=ninputs, output_dim=out_neurons1,activation='sigmoid'/                      ,kernel_regularizer=regularizers.l2(0.00000001))(inp1)    m1 = Dropout(0.2)(m1)    m1 = Dense(100,activation='sigmoid')(m1)    #m1 = Dropout(0.2)(m1)    #m1 = Dense(4, activation='sigmoid')(m1)        m2 = Dense(input_dim=n_feats, output_dim=n_feats,activation='relu')(inp2)    m2 = Dense(4,activation='relu')(inp2)    #m2=Dense(4,activation='relu')(m2)        m3 = Dense(500, input_dim=n_tfidf, activation='relu',/                    kernel_regularizer=regularizers.l2(reg))(inp3)        m3 = Dropout(0.4)(m3)    m3 = Dense(50, activation='relu')(m3)    #m3 = Dropout(0.4)(m3)    #m3 = Dense(4, activation='softmax')(m3)            #m1 = Dense(input_dim=ninputs, output_dim=out_neurons2,activation='sigmoid')(m1)    #m2 = Dense(input_dim=ninputs, output_dim=out_neurons2,activation='softmax')(m2)        m = Merge(mode='concat')([m1,m2,m3])        #mul = Multiply()([m1,m2])    #add = Abs()([m1,m2])    #m = Merge(mode='concat')([mul,add])        score = Dense(output_dim=nclass,activation='softmax')(m)    model = Model([inp1,inp2,inp3],score)    model.compile(loss='categorical_crossentropy', optimizer='adam')    return model 
开发者ID:GauravBh1010tt,项目名称:DeepLearn,代码行数:43,代码来源:eval_fnc.py


示例9: attention_temporal

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Multiply [as 别名]def attention_temporal(self, input_data, sequence_length):        """        A temporal attention layer        :param input_data: Network input        :param sequence_length: Length of the input sequence        :return: The output of attention layer        """        a = Permute((2, 1))(input_data)        a = Dense(sequence_length, activation='sigmoid')(a)        a_probs = Permute((2, 1))(a)        output_attention_mul = Multiply()([input_data, a_probs])        return output_attention_mul 
开发者ID:aras62,项目名称:PIEPredict,代码行数:14,代码来源:pie_predict.py


示例10: attention_element

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Multiply [as 别名]def attention_element(self, input_data, input_dim):        """        A self-attention unit        :param input_data: Network input        :param input_dim: The feature dimension of the input        :return: The output of the attention network        """        input_data_probs = Dense(input_dim, activation='sigmoid')(input_data)  # sigmoid        output_attention_mul = Multiply()([input_data, input_data_probs])  # name='att_mul'        return output_attention_mul 
开发者ID:aras62,项目名称:PIEPredict,代码行数:12,代码来源:pie_predict.py


示例11: _to_normal2d

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Multiply [as 别名]def _to_normal2d(output_batch) -> ds.MultivariateNormalTriL:    """    :param output_batch: (n_samples, 5)    :return    """    # mean of x and y    x_mean = Lambda(lambda o: o[:, 0])(output_batch)    y_mean = Lambda(lambda o: o[:, 1])(output_batch)    # std of x and y    # std is must be 0 or positive    x_std = Lambda(lambda o: K.exp(o[:, 2]))(output_batch)    y_std = Lambda(lambda o: K.exp(o[:, 3]))(output_batch)    # correlation coefficient    # correlation coefficient range is [-1, 1]    cor = Lambda(lambda o: K.tanh(o[:, 4]))(output_batch)    loc = Concatenate()([        Lambda(lambda x_mean: K.expand_dims(x_mean, 1))(x_mean),        Lambda(lambda y_mean: K.expand_dims(y_mean, 1))(y_mean)    ])    x_var = Lambda(lambda x_std: K.square(x_std))(x_std)    y_var = Lambda(lambda y_std: K.square(y_std))(y_std)    xy_cor = Multiply()([x_std, y_std, cor])    cov = Lambda(lambda inputs: K.stack(inputs, axis=0))(        [x_var, xy_cor, xy_cor, y_var])    cov = Lambda(lambda cov: K.permute_dimensions(cov, (1, 0)))(cov)    cov = Reshape((2, 2))(cov)    scale_tril = Lambda(lambda cov: tf.cholesky(cov))(cov)    mvn = ds.MultivariateNormalTriL(loc, scale_tril)    return mvn 
开发者ID:t2kasa,项目名称:social_lstm_keras_tf,代码行数:39,代码来源:tf_normal_sampler.py


示例12: call

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Multiply [as 别名]def call(self, x):        dim = K.int_shape(x)[-1]        transform_gate = self.dense_1(x)        transform_gate = Activation("sigmoid")(transform_gate)        carry_gate = Lambda(lambda x: 1.0 - x, output_shape=(dim,))(transform_gate)        transformed_data = self.dense_2(x)        transformed_data = Activation(self.activation)(transformed_data)        transformed_gated = Multiply()([transform_gate, transformed_data])        identity_gated = Multiply()([carry_gate, x])        value = Add()([transformed_gated, identity_gated])        return value 
开发者ID:yongzhuo,项目名称:Keras-TextClassification,代码行数:13,代码来源:graph_yoon_kim.py


示例13: call

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Multiply [as 别名]def call(self, inputs, **kwargs):        x = inputs[:, 1]        # print('x.shape: ' + str(K.int_shape(x)))        bool_mask = Lambda(lambda t: K.greater_equal(t[:, 0], t[:, 1]),                           output_shape=K.int_shape(x)[1:])(inputs)        # print('bool_mask.shape: ' + str(K.int_shape(bool_mask)))        mask = Lambda(lambda t: K.cast(t, dtype='float32'))(bool_mask)        # print('mask.shape: ' + str(K.int_shape(mask)))        x = Multiply()([mask, x])        # print('x.shape: ' + str(K.int_shape(x)))        return x 
开发者ID:foamliu,项目名称:Deep-Image-Matting,代码行数:13,代码来源:unpooling_layer.py


示例14: attention

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Multiply [as 别名]def attention(inputs, single_attention_vector=False):    # attention机制    time_steps = k_keras.int_shape(inputs)[1]    input_dim = k_keras.int_shape(inputs)[2]    x = Permute((2, 1))(inputs)    x = Dense(time_steps, activation='softmax')(x)    if single_attention_vector:        x = Lambda(lambda x: k_keras.mean(x, axis=1))(x)        x = RepeatVector(input_dim)(x)    a_probs = Permute((2, 1))(x)    output_attention_mul = Multiply()([inputs, a_probs])    return output_attention_mul 
开发者ID:yongzhuo,项目名称:nlp_xiaojiang,代码行数:15,代码来源:keras_bert_classify_bi_lstm.py


示例15: build

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Multiply [as 别名]def build(self):    # qd_input = Input((self.config.kernel_size,), name="qd_input")    dd_input = Input((self.config.nb_supervised_doc, self.config.kernel_size), name='dd_input')    # z = Dense(self.config.hidden_size, activation='tanh', name="qd_hidden")(qd_input)    # qd_out = Dense(self.config.out_size, name="qd_out")(z)    z = Dense(self.config.hidden_size, activation='tanh', name="dd_hidden")(dd_input)    dd_init_out = Dense(self.config.out_size, name='dd_init_out')(z)    dd_gate = Input((self.config.nb_supervised_doc, 1), name='baseline_doc_score')    dd_w = Dense(1, kernel_initializer=self.initializer_gate, use_bias=False, name='dd_gate')(dd_gate)    # dd_w = Lambda(lambda x: softmax(x, axis=1), output_shape=(self.config.nb_supervised_doc,), name='dd_softmax')(dd_w)    dd_w = Reshape((self.config.nb_supervised_doc,))(dd_w)    dd_init_out = Reshape((self.config.nb_supervised_doc,))(dd_init_out)    if self.config.method in [1, 3]: # no doc gating, with dense layer      z = dd_init_out    elif self.config.method == 2:      logging.info("Apply doc gating")      z = Multiply(name='dd_out')([dd_init_out, dd_w])    else:      raise ValueError("Method not initialized, please check config file")    if self.config.method in [1, 2]:      logging.info("Dense layer on top")      z = Dense(self.config.merge_hidden, activation='tanh', name='merge_hidden')(z)      out = Dense(self.config.merge_out, name='score')(z)    else:      logging.info("Apply doc gating, No dense layer on top, sum up scores")      out = Dot(axes=[1, 1], name='score')([z, dd_w])    model = Model(inputs=[dd_input, dd_gate], outputs=[out])    print(model.summary())    return model 
开发者ID:ucasir,项目名称:NPRF,代码行数:38,代码来源:nprf_knrm.py


示例16: stateless_attention_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Multiply [as 别名]def stateless_attention_model(**kwargs):    X = LSTM(kwargs['hidden_units'], kernel_initializer='he_normal', activation='tanh',             dropout=kwargs['dropout'], return_sequences=True)(kwargs['embeddings'])    attention_layer = Permute((2, 1))(X)    attention_layer = Dense(kwargs['max_tweet_length'], activation='softmax')(attention_layer)    attention_layer = Lambda(lambda x: K.mean(x, axis=1), name='dim_reduction')(attention_layer)    attention_layer = RepeatVector(int(X.shape[2]))(attention_layer)    attention_probabilities = Permute((2, 1), name='attention_probs')(attention_layer)    attention_layer = Multiply()([X, attention_probabilities])    attention_layer = Flatten()(attention_layer)    return attention_layer 
开发者ID:MirunaPislar,项目名称:Sarcasm-Detection,代码行数:13,代码来源:dl_models.py


示例17: interaction

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Multiply [as 别名]def interaction(input_1, input_2):    "Get the interaction then concatenate results"    mult = Multiply()([input_1, input_2])    add = Add()([input_1, input_2])    sub = substract(input_1, input_2)    #distance = el_distance(input_1, input_2)        out_= Concatenate()([sub, mult, add,])    return out_ 
开发者ID:zake7749,项目名称:CIKM-AnalytiCup-2018,代码行数:11,代码来源:utils.py


示例18: NeuCF_get_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Multiply [as 别名]def NeuCF_get_model(num_users, num_items, mf_dim=10, layers=[10], reg_layers=[0], reg_mf=0.0):    assert len(layers) == len(reg_layers)    num_layer = len(layers) #Number of layers in the MLP    # Input variables    user_input = Input(shape=(1,), dtype='int32', name = 'user_input')    item_input = Input(shape=(1,), dtype='int32', name = 'item_input')    # Embedding layer    MF_Embedding_User = Embedding(input_dim = num_users, output_dim = mf_dim, name = 'mf_embedding_user',                                  embeddings_initializer = 'random_normal', embeddings_regularizer = l2(reg_mf), input_length=1)    MF_Embedding_Item = Embedding(input_dim = num_items, output_dim = mf_dim, name = 'mf_embedding_item',                                  embeddings_initializer = 'random_normal', embeddings_regularizer = l2(reg_mf), input_length=1)    MLP_Embedding_User = Embedding(input_dim = num_users, output_dim = int(layers[0]/2), name = "mlp_embedding_user",                                   embeddings_initializer = 'random_normal', embeddings_regularizer = l2(reg_layers[0]), input_length=1)    MLP_Embedding_Item = Embedding(input_dim = num_items, output_dim = int(layers[0]/2), name = 'mlp_embedding_item',                                   embeddings_initializer = 'random_normal', embeddings_regularizer = l2(reg_layers[0]), input_length=1)    # MF part    mf_user_latent = Flatten()(MF_Embedding_User(user_input))    mf_item_latent = Flatten()(MF_Embedding_Item(item_input))    mf_vector = Multiply()([mf_user_latent, mf_item_latent]) # element-wise multiply    # MLP part    mlp_user_latent = Flatten()(MLP_Embedding_User(user_input))    mlp_item_latent = Flatten()(MLP_Embedding_Item(item_input))    mlp_vector = Concatenate()([mlp_user_latent, mlp_item_latent])    for idx in range(1, num_layer):        layer = Dense(layers[idx], kernel_regularizer= l2(reg_layers[idx]), activation='relu', name="layer%d" %idx)        mlp_vector = layer(mlp_vector)    # Concatenate MF and MLP parts    predict_vector = Concatenate()([mf_vector, mlp_vector])    # Final prediction layer    prediction = Dense(1, activation='sigmoid', kernel_initializer='lecun_uniform', name = "prediction")(predict_vector)    model = Model(inputs=[user_input, item_input],                  outputs=prediction)    return model 
开发者ID:MaurizioFD,项目名称:RecSys2019_DeepLearning_Evaluation,代码行数:43,代码来源:NeuMF_RecommenderWrapper.py


示例19: __init__

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Multiply [as 别名]def __init__(self, env, args):        super(Agent_ActorCritic,self).__init__(env)        self.log_path = './actor_critic.log'        self.env = env        self.actions_avialbe = env.action_space.n        self.feature_dim = env.observation_space.shape[0]        self.t = 0        self.prev_x = None        self.actor_learning_rate  = 1e-3        self.critic_learning_rate = 1e-3        self.gamma = 0.9        self.dummy_act_picked = np.zeros((1,self.actions_avialbe))        # Actor        input_frame  = Input(shape=(self.feature_dim,))        act_picked = Input(shape=(self.actions_avialbe,))        hidden_f = Dense(20,activation='relu')(input_frame)        act_prob = Dense(self.actions_avialbe,activation='softmax')(hidden_f)        selected_act_prob = Multiply()([act_prob,act_picked])        selected_act_prob = Lambda(lambda x:K.sum(x, axis=-1, keepdims=True),output_shape=(1,))(selected_act_prob)        model = Model(inputs=[input_frame,act_picked], outputs=[act_prob, selected_act_prob])        opt = Adam(lr=self.actor_learning_rate)        model.compile(loss=['mse',categorical_crossentropy], loss_weights=[0.0,1.0],optimizer=opt)        self.actor = model        # Critic        model = Sequential()        model.add(Dense(20,activation='relu',input_shape=(self.feature_dim,)))        model.add(Dense(1))        opt = Adam(lr=self.critic_learning_rate)        model.compile(loss='mse', optimizer=opt)        self.critic = model 
开发者ID:Alexander-H-Liu,项目名称:Policy-Gradient-and-Actor-Critic-Keras,代码行数:41,代码来源:agent_actorcritic.py


示例20: baseline_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Multiply [as 别名]def baseline_model():    input_1 = Input(shape=(224, 224, 3))    input_2 = Input(shape=(224, 224, 3))    base_model = VGGFace(model='resnet50', include_top=False)    for x in base_model.layers[:-3]:        x.trainable = True    x1 = base_model(input_1)    x2 = base_model(input_2)    # x1_ = Reshape(target_shape=(7*7, 2048))(x1)    # x2_ = Reshape(target_shape=(7*7, 2048))(x2)    #    # x_dot = Dot(axes=[2, 2], normalize=True)([x1_, x2_])    # x_dot = Flatten()(x_dot)    x1 = Concatenate(axis=-1)([GlobalMaxPool2D()(x1), GlobalAvgPool2D()(x1)])    x2 = Concatenate(axis=-1)([GlobalMaxPool2D()(x2), GlobalAvgPool2D()(x2)])    x3 = Subtract()([x1, x2])    x3 = Multiply()([x3, x3])    x = Multiply()([x1, x2])    x = Concatenate(axis=-1)([x, x3])    x = Dense(100, activation="relu")(x)    x = Dropout(0.01)(x)    out = Dense(1, activation="sigmoid")(x)    model = Model([input_1, input_2], out)    model.compile(loss="binary_crossentropy", metrics=['acc'], optimizer=Adam(0.00001))    model.summary()    return model 
开发者ID:CVxTz,项目名称:kinship_prediction,代码行数:41,代码来源:vgg_face.py


示例21: baseline_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Multiply [as 别名]def baseline_model():    input_1 = Input(shape=(224, 224, 3))    input_2 = Input(shape=(224, 224, 3))    base_model = ResNet50(weights='imagenet', include_top=False)    for x in base_model.layers[:-3]:        x.trainable = True    x1 = base_model(input_1)    x2 = base_model(input_2)    # x1_ = Reshape(target_shape=(7*7, 2048))(x1)    # x2_ = Reshape(target_shape=(7*7, 2048))(x2)    #    # x_dot = Dot(axes=[2, 2], normalize=True)([x1_, x2_])    # x_dot = Flatten()(x_dot)    x1 = Concatenate(axis=-1)([GlobalMaxPool2D()(x1), GlobalAvgPool2D()(x1)])    x2 = Concatenate(axis=-1)([GlobalMaxPool2D()(x2), GlobalAvgPool2D()(x2)])    x3 = Subtract()([x1, x2])    x3 = Multiply()([x3, x3])    x = Multiply()([x1, x2])    x = Concatenate(axis=-1)([x, x3])    x = Dense(100, activation="relu")(x)    x = Dropout(0.01)(x)    out = Dense(1, activation="sigmoid")(x)    model = Model([input_1, input_2], out)    model.compile(loss="binary_crossentropy", metrics=['acc'], optimizer=Adam(0.00001))    model.summary()    return model 
开发者ID:CVxTz,项目名称:kinship_prediction,代码行数:41,代码来源:baseline.py


万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。