这篇教程Python layers.AveragePooling3D方法代码示例写得很实用,希望能帮到您。
本文整理汇总了Python中keras.layers.AveragePooling3D方法的典型用法代码示例。如果您正苦于以下问题:Python layers.AveragePooling3D方法的具体用法?Python layers.AveragePooling3D怎么用?Python layers.AveragePooling3D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.layers 的用法示例。 在下文中一共展示了layers.AveragePooling3D方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。 示例1: transition_layer_3D# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import AveragePooling3D [as 别名]def transition_layer_3D(input_tensor, numFilters, compressionFactor=1.0): numOutPutFilters = int(numFilters*compressionFactor) if K.image_data_format() == 'channels_last': bn_axis = -1 else: bn_axis = 1 x = BatchNormalization(axis=bn_axis)(input_tensor) x = Activation('relu')(x) x = Conv3D(numOutPutFilters, (1, 1, 1), strides=(1, 1, 1), padding='same', kernel_initializer='he_normal')(x) # downsampling x = AveragePooling3D((2, 2, 2), strides=(2, 2, 2), padding='valid', data_format='channels_last', name='')(x) return x, numOutPutFilters
示例2: transition_SE_layer_3D# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import AveragePooling3D [as 别名]def transition_SE_layer_3D(input_tensor, numFilters, compressionFactor=1.0, se_ratio=16): numOutPutFilters = int(numFilters*compressionFactor) if K.image_data_format() == 'channels_last': bn_axis = -1 else: bn_axis = 1 x = BatchNormalization(axis=bn_axis)(input_tensor) x = Activation('relu')(x) x = Conv3D(numOutPutFilters, (1, 1, 1), strides=(1, 1, 1), padding='same', kernel_initializer='he_normal')(x) # SE Block x = squeeze_excitation_block_3D(x, ratio=se_ratio) #x = BatchNormalization(axis=bn_axis)(x) # downsampling x = AveragePooling3D((2, 2, 2), strides=(2, 2, 2), padding='valid', data_format='channels_last', name='')(x) #x = squeeze_excitation_block(x, ratio=se_ratio) return x, numOutPutFilters
示例3: inception3D# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import AveragePooling3D [as 别名]def inception3D(image_size, num_labels): num_channels=1 inputs = Input(shape = (image_size, image_size, image_size, num_channels)) m = Convolution3D(32, 5, 5, 5, subsample=(1, 1, 1), activation='relu', border_mode='valid', input_shape=())(inputs) m = MaxPooling3D(pool_size=(2, 2, 2), strides=None, border_mode='same')(m) # inception module 0 branch1x1 = Convolution3D(32, 1, 1, 1, subsample=(1, 1, 1), activation='relu', border_mode='same')(m) branch3x3_reduce = Convolution3D(32, 1, 1, 1, subsample=(1, 1, 1), activation='relu', border_mode='same')(m) branch3x3 = Convolution3D(64, 3, 3, 3, subsample=(1, 1, 1), activation='relu', border_mode='same')(branch3x3_reduce) branch5x5_reduce = Convolution3D(16, 1, 1, 1, subsample=(1, 1, 1), activation='relu', border_mode='same')(m) branch5x5 = Convolution3D(32, 5, 5, 5, subsample=(1, 1, 1), activation='relu', border_mode='same')(branch5x5_reduce) branch_pool = MaxPooling3D(pool_size=(2, 2, 2), strides=(1, 1, 1), border_mode='same')(m) branch_pool_proj = Convolution3D(32, 1, 1, 1, subsample=(1, 1, 1), activation='relu', border_mode='same')(branch_pool) #m = merge([branch1x1, branch3x3, branch5x5, branch_pool_proj], mode='concat', concat_axis=-1) from keras.layers import concatenate m = concatenate([branch1x1, branch3x3, branch5x5, branch_pool_proj],axis=-1) m = AveragePooling3D(pool_size=(2, 2, 2), strides=(1, 1, 1), border_mode='valid')(m) m = Flatten()(m) m = Dropout(0.7)(m) # expliciately seperate Dense and Activation layers in order for projecting to structural feature space m = Dense(num_labels, activation='linear')(m) m = Activation('softmax')(m) mod = KM.Model(input=inputs, output=m) return mod
示例4: _Transition# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import AveragePooling3D [as 别名]def _Transition(prev_layer, num_output_features): # print('In _Transition') x = BatchNormalization()(prev_layer) x = Activation('relu')(x) x = Conv3D(filters=num_output_features, kernel_size=1, strides=1, use_bias=False, padding='same')(x) x = AveragePooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2))(x) # print('Completed _Transition') return x
示例5: define_model# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import AveragePooling3D [as 别名]def define_model(image_shape): img_input = Input(shape=image_shape) x = Convolution3D(16, 3, 3, 3, subsample=(1, 1, 1), border_mode='same')(img_input) x = res_block(x, nb_filters=16, block=0, subsample_factor=1) x = res_block(x, nb_filters=16, block=0, subsample_factor=1) x = res_block(x, nb_filters=16, block=0, subsample_factor=1) x = res_block(x, nb_filters=32, block=1, subsample_factor=2) x = res_block(x, nb_filters=32, block=1, subsample_factor=1) x = res_block(x, nb_filters=32, block=1, subsample_factor=1) x = res_block(x, nb_filters=64, block=2, subsample_factor=2) x = res_block(x, nb_filters=64, block=2, subsample_factor=1) x = res_block(x, nb_filters=64, block=2, subsample_factor=1) x = res_block(x, nb_filters=64, block=2, subsample_factor=1) x = res_block(x, nb_filters=128, block=3, subsample_factor=2) x = res_block(x, nb_filters=128, block=3, subsample_factor=1) x = res_block(x, nb_filters=128, block=3, subsample_factor=1) x = res_block(x, nb_filters=128, block=3, subsample_factor=1) x = res_block(x, nb_filters=256, block=4, subsample_factor=2) x = res_block(x, nb_filters=256, block=4, subsample_factor=1) x = res_block(x, nb_filters=256, block=4, subsample_factor=1) x = res_block(x, nb_filters=256, block=4, subsample_factor=1) x = BatchNormalization(axis=4)(x) x = Activation('relu')(x) x = AveragePooling3D(pool_size=(3, 3, 3), strides=(2, 2, 2), border_mode='valid')(x) x = Flatten()(x) x = Dense(1, activation='sigmoid', name='predictions')(x) model = Model(img_input, x) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy', 'precision', 'recall', 'fmeasure']) model.summary() return model
开发者ID:mdai,项目名称:kaggle-lung-cancer,代码行数:41,代码来源:m10a.py
示例6: define_model# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import AveragePooling3D [as 别名]def define_model(image_shape): img_input = Input(shape=image_shape) x = Convolution3D(16, 5, 5, 5, subsample=(1, 1, 1), border_mode='same')(img_input) x = res_block(x, nb_filters=16, block=0, subsample_factor=1) x = res_block(x, nb_filters=16, block=0, subsample_factor=1) x = res_block(x, nb_filters=16, block=0, subsample_factor=1) x = res_block(x, nb_filters=32, block=1, subsample_factor=2) x = res_block(x, nb_filters=32, block=1, subsample_factor=1) x = res_block(x, nb_filters=32, block=1, subsample_factor=1) x = res_block(x, nb_filters=64, block=2, subsample_factor=2) x = res_block(x, nb_filters=64, block=2, subsample_factor=1) x = res_block(x, nb_filters=64, block=2, subsample_factor=1) x = res_block(x, nb_filters=128, block=3, subsample_factor=2) x = res_block(x, nb_filters=128, block=3, subsample_factor=1) x = res_block(x, nb_filters=128, block=3, subsample_factor=1) x = BatchNormalization(axis=4)(x) x = Activation('relu')(x) x = AveragePooling3D(pool_size=(4, 4, 8))(x) x = Flatten()(x) x = Dense(1, activation='sigmoid', name='predictions')(x) model = Model(img_input, x) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy', 'precision', 'recall', 'fmeasure']) model.summary() return model
开发者ID:mdai,项目名称:kaggle-lung-cancer,代码行数:34,代码来源:sd01a.py
示例7: define_model# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import AveragePooling3D [as 别名]def define_model(): img_input = Input(shape=(64, 64, 64, 1)) x = Convolution3D(16, 3, 3, 3, subsample=(1, 1, 1), border_mode='same')(img_input) x = res_block(x, nb_filters=16, block=0, subsample_factor=1) x = res_block(x, nb_filters=16, block=0, subsample_factor=1) x = res_block(x, nb_filters=16, block=0, subsample_factor=1) x = res_block(x, nb_filters=32, block=1, subsample_factor=2) x = res_block(x, nb_filters=32, block=1, subsample_factor=1) x = res_block(x, nb_filters=32, block=1, subsample_factor=1) x = res_block(x, nb_filters=64, block=2, subsample_factor=2) x = res_block(x, nb_filters=64, block=2, subsample_factor=1) x = res_block(x, nb_filters=64, block=2, subsample_factor=1) x = res_block(x, nb_filters=64, block=2, subsample_factor=1) x = res_block(x, nb_filters=128, block=3, subsample_factor=2) x = res_block(x, nb_filters=128, block=3, subsample_factor=1) x = res_block(x, nb_filters=128, block=3, subsample_factor=1) x = res_block(x, nb_filters=128, block=3, subsample_factor=1) x = res_block(x, nb_filters=256, block=4, subsample_factor=2) x = res_block(x, nb_filters=256, block=4, subsample_factor=1) x = res_block(x, nb_filters=256, block=4, subsample_factor=1) x = res_block(x, nb_filters=256, block=4, subsample_factor=1) x = BatchNormalization(axis=4)(x) x = Activation('relu')(x) x = AveragePooling3D(pool_size=(3, 3, 3), strides=(2, 2, 2), border_mode='valid')(x) x = Flatten()(x) x = Dense(1, activation='sigmoid', name='predictions')(x) model = Model(img_input, x) model.compile(optimizer='adam', loss='binary_crossentropy') return model
开发者ID:mdai,项目名称:kaggle-lung-cancer,代码行数:41,代码来源:m10a.py
示例8: define_model# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import AveragePooling3D [as 别名]def define_model(): img_input = Input(shape=(32, 32, 64, 1)) x = Convolution3D(16, 5, 5, 5, subsample=(1, 1, 1), border_mode='same')(img_input) x = res_block(x, nb_filters=16, block=0, subsample_factor=1) x = res_block(x, nb_filters=16, block=0, subsample_factor=1) x = res_block(x, nb_filters=16, block=0, subsample_factor=1) x = res_block(x, nb_filters=32, block=1, subsample_factor=2) x = res_block(x, nb_filters=32, block=1, subsample_factor=1) x = res_block(x, nb_filters=32, block=1, subsample_factor=1) x = res_block(x, nb_filters=64, block=2, subsample_factor=2) x = res_block(x, nb_filters=64, block=2, subsample_factor=1) x = res_block(x, nb_filters=64, block=2, subsample_factor=1) x = res_block(x, nb_filters=128, block=3, subsample_factor=2) x = res_block(x, nb_filters=128, block=3, subsample_factor=1) x = res_block(x, nb_filters=128, block=3, subsample_factor=1) x = BatchNormalization(axis=4)(x) x = Activation('relu')(x) x = AveragePooling3D(pool_size=(4, 4, 8))(x) x = Flatten()(x) x = Dense(1, activation='sigmoid', name='predictions')(x) model = Model(img_input, x) model.compile(optimizer='adam', loss='binary_crossentropy') return model
开发者ID:mdai,项目名称:kaggle-lung-cancer,代码行数:34,代码来源:sd01a.py
示例9: graph_embedding# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import AveragePooling3D [as 别名]def graph_embedding(tensor, n_layers, n_avg_size, n_kernel_size, t_kernel_size, n_max_size, t_max_size): """ Graph embedding. :param tensor: :param n_layers: :return: """ input_shape = K.int_shape(tensor) _, n_odes, n_timesteps, side_dim, side_dim, n_channels_in = input_shape # hide temporal dimension tensor = TransposeLayer((0, 2, 1, 3, 4, 5))(tensor) # (None, 64, 100, 7, 7, 1024) tensor = ReshapeLayer((n_odes, side_dim, side_dim, n_channels_in))(tensor) # pool over node tensor = AveragePooling3D(pool_size=(n_avg_size, 1, 1), name='pool_n')(tensor) _, n_odes, side_dim, side_dim, n_channels_in = K.int_shape(tensor) # recover node dimension tensor = ReshapeLayer((n_timesteps, n_odes, side_dim, side_dim, n_channels_in))(tensor) # (None, 64, 100, 7, 7, 1024) tensor = TransposeLayer((0, 2, 1, 3, 4, 5))(tensor) # (None, 100, 64, 7, 7, 1024) # hide the node dimension tensor = ReshapeLayer((n_timesteps, side_dim, side_dim, n_channels_in))(tensor) # (None, 64, 7, 7, 1024) # 2 layers spatio-temporal conv for i in range(n_layers): layer_id = '%d' % (i + 1) # spatial conv tensor = Conv3D(n_channels_in, (1, 1, 1), padding='SAME', name='conv_s_%s' % (layer_id))(tensor) # (None, 64, 7, 7, 1024) # temporal conv tensor = DepthwiseConv1DLayer(t_kernel_size, padding='SAME', name='conv_t_%s' % (layer_id))(tensor) # (None, 64, 7, 7, 1024) # node conv tensor = __convolve_nodes(tensor, n_odes, layer_id, n_kernel_size) # (None, 100, 7, 7, 1024) # activation tensor = BatchNormalization()(tensor) tensor = LeakyReLU(alpha=0.2)(tensor) # max_pool over nodes tensor = MaxPooling3D(pool_size=(n_max_size, 1, 1), name='pool_n_%s' % (layer_id))(tensor) # (None, 100, 7, 7, 1024) _, n_odes, side_dim, side_dim, n_channels_in = K.int_shape(tensor) # get back temporal dimension and hide node dimension tensor = ReshapeLayer((n_timesteps, n_odes, side_dim, side_dim, n_channels_in))(tensor) # (None, 64, 100, 7, 7, 1024) tensor = TransposeLayer((0, 2, 1, 3, 4, 5))(tensor) # (None, 100, 64, 7, 7, 1024) tensor = ReshapeLayer((n_timesteps, side_dim, side_dim, n_channels_in))(tensor) # (None, 64, 7, 7, 1024) # max_pool over time tensor = MaxPooling3D(pool_size=(t_max_size, 1, 1), name='pool_t_%s' % (layer_id))(tensor) # (None, 64, 7, 7, 1024) _, n_timesteps, side_dim, side_dim, n_channels_in = K.int_shape(tensor) # (None, 64, 7, 7, 1024) # recover nodes dimension tensor = ReshapeLayer((n_odes, n_timesteps, side_dim, side_dim, n_channels_in))(tensor) return tensor
示例10: get_net# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import AveragePooling3D [as 别名]def get_net(input_shape=(CUBE_SIZE, CUBE_SIZE, CUBE_SIZE, 1), load_weight_path=None, features=False, mal=False) -> Model: inputs = Input(shape=input_shape, name="input_1") x = inputs x = AveragePooling3D(pool_size=(2, 1, 1), strides=(2, 1, 1), border_mode="same")(x) x = Convolution3D(64, 3, 3, 3, activation='relu', border_mode='same', name='conv1', subsample=(1, 1, 1))(x) x = MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2), border_mode='valid', name='pool1')(x) # 2nd layer group x = Convolution3D(128, 3, 3, 3, activation='relu', border_mode='same', name='conv2', subsample=(1, 1, 1))(x) x = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool2')(x) if USE_DROPOUT: x = Dropout(p=0.3)(x) # 3rd layer group x = Convolution3D(256, 3, 3, 3, activation='relu', border_mode='same', name='conv3a', subsample=(1, 1, 1))(x) x = Convolution3D(256, 3, 3, 3, activation='relu', border_mode='same', name='conv3b', subsample=(1, 1, 1))(x) x = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool3')(x) if USE_DROPOUT: x = Dropout(p=0.4)(x) # 4th layer group x = Convolution3D(512, 3, 3, 3, activation='relu', border_mode='same', name='conv4a', subsample=(1, 1, 1))(x) x = Convolution3D(512, 3, 3, 3, activation='relu', border_mode='same', name='conv4b', subsample=(1, 1, 1),)(x) x = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool4')(x) if USE_DROPOUT: x = Dropout(p=0.5)(x) last64 = Convolution3D(64, 2, 2, 2, activation="relu", name="last_64")(x) out_class = Convolution3D(1, 1, 1, 1, activation="sigmoid", name="out_class_last")(last64) out_class = Flatten(name="out_class")(out_class) out_malignancy = Convolution3D(1, 1, 1, 1, activation=None, name="out_malignancy_last")(last64) out_malignancy = Flatten(name="out_malignancy")(out_malignancy) model = Model(input=inputs, output=[out_class, out_malignancy]) if load_weight_path is not None: model.load_weights(load_weight_path, by_name=False) model.compile(optimizer=SGD(lr=LEARN_RATE, momentum=0.9, nesterov=True), loss={"out_class": "binary_crossentropy", "out_malignancy": mean_absolute_error}, metrics={"out_class": [binary_accuracy, binary_crossentropy], "out_malignancy": mean_absolute_error}) if features: model = Model(input=inputs, output=[last64]) model.summary(line_length=140) return model
示例11: pooling# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import AveragePooling3D [as 别名]def pooling(layer, layer_in, layerId, tensor=True): poolMap = { ('1D', 'MAX'): MaxPooling1D, ('2D', 'MAX'): MaxPooling2D, ('3D', 'MAX'): MaxPooling3D, ('1D', 'AVE'): AveragePooling1D, ('2D', 'AVE'): AveragePooling2D, ('3D', 'AVE'): AveragePooling3D, } out = {} layer_type = layer['params']['layer_type'] pool_type = layer['params']['pool'] padding = get_padding(layer) if (layer_type == '1D'): strides = layer['params']['stride_w'] kernel = layer['params']['kernel_w'] if (padding == 'custom'): p_w = layer['params']['pad_w'] out[layerId + 'Pad'] = ZeroPadding1D(padding=p_w)(*layer_in) padding = 'valid' layer_in = [out[layerId + 'Pad']] elif (layer_type == '2D'): strides = (layer['params']['stride_h'], layer['params']['stride_w']) kernel = (layer['params']['kernel_h'], layer['params']['kernel_w']) if (padding == 'custom'): p_h, p_w = layer['params']['pad_h'], layer['params']['pad_w'] out[layerId + 'Pad'] = ZeroPadding2D(padding=(p_h, p_w))(*layer_in) padding = 'valid' layer_in = [out[layerId + 'Pad']] else: strides = (layer['params']['stride_h'], layer['params']['stride_w'], layer['params']['stride_d']) kernel = (layer['params']['kernel_h'], layer['params']['kernel_w'], layer['params']['kernel_d']) if (padding == 'custom'): p_h, p_w, p_d = layer['params']['pad_h'], layer['params']['pad_w'],/ layer['params']['pad_d'] out[layerId + 'Pad'] = ZeroPadding3D(padding=(p_h, p_w, p_d))(*layer_in) padding = 'valid' layer_in = [out[layerId + 'Pad']] # Note - figure out a permanent fix for padding calculation of layers # in case padding is given in layer attributes # if ('padding' in layer['params']): # padding = layer['params']['padding'] out[layerId] = poolMap[(layer_type, pool_type)]( pool_size=kernel, strides=strides, padding=padding) if tensor: out[layerId] = out[layerId](*layer_in) return out# ********** Locally-connected Layers **********
|