您当前的位置:首页 > IT编程 > Keras
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Python layers.dot方法代码示例

51自学网 2020-12-01 11:09:08
  Keras
这篇教程Python layers.dot方法代码示例写得很实用,希望能帮到您。

本文整理汇总了Python中keras.layers.dot方法的典型用法代码示例。如果您正苦于以下问题:Python layers.dot方法的具体用法?Python layers.dot怎么用?Python layers.dot使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.layers的用法示例。

在下文中一共展示了layers.dot方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: self_attention

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import dot [as 别名]def self_attention(x):        '''     .  stands for dot product     *  stands for elemwise multiplication            m = x . transpose(x)    n = softmax(m)    o = n . x      a = o * x                      return a            '''    m = dot([x, x], axes=[2,2])    n = Activation('softmax')(m)    o = dot([n, x], axes=[2,1])    a = multiply([o, x])            return a 
开发者ID:soujanyaporia,项目名称:contextual-multimodal-fusion,代码行数:23,代码来源:trimodal_attention_models.py


示例2: test_tiny_cos_random

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import dot [as 别名]def test_tiny_cos_random(self):        np.random.seed(1988)        input_dim = 10        num_channels = 6        # Define a model        input_tensor = Input(shape=(input_dim,))        x1 = Dense(num_channels)(input_tensor)        x2 = Dense(num_channels)(x1)        x3 = Dense(num_channels)(x1)        x4 = dot([x2, x3], axes=-1, normalize=True)        x5 = Dense(num_channels)(x4)        model = Model(inputs=[input_tensor], outputs=[x5])        # Set some random weights        model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])        # Get the coreml model        self._test_model(model) 
开发者ID:apple,项目名称:coremltools,代码行数:22,代码来源:test_keras2_numeric.py


示例3: create_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import dot [as 别名]def create_model(self):        user_id_input = Input(shape=[1], name='user')        item_id_input = Input(shape=[1], name='item')        user_embedding = Embedding(output_dim=EMBEDDING_SIZE, input_dim=self.max_user_id + 1,                                   input_length=1, name='user_embedding')(user_id_input)        item_embedding = Embedding(output_dim=EMBEDDING_SIZE, input_dim=self.max_item_id + 1,                                   input_length=1, name='item_embedding')(item_id_input)        # reshape from shape: (batch_size, input_length, embedding_size)        # to shape: (batch_size, input_length * embedding_size) which is        # equal to shape: (batch_size, embedding_size)        user_vecs = Flatten()(user_embedding)        item_vecs = Flatten()(item_embedding)        # y = merge([user_vecs, item_vecs], mode='dot', output_shape=(1,))        y = dot([user_vecs, item_vecs], axes=1)        model = Model(inputs=[user_id_input, item_id_input], outputs=[y])        model.compile(optimizer='adam', loss='mae')        return model 
开发者ID:chen0040,项目名称:keras-recommender,代码行数:24,代码来源:cf.py


示例4: test_merge_dot

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import dot [as 别名]def test_merge_dot():    i1 = layers.Input(shape=(4,))    i2 = layers.Input(shape=(4,))    o = layers.dot([i1, i2], axes=1)    assert o._keras_shape == (None, 1)    model = models.Model([i1, i2], o)    dot_layer = layers.Dot(axes=1)    o2 = dot_layer([i1, i2])    assert dot_layer.output_shape == (None, 1)    x1 = np.random.random((2, 4))    x2 = np.random.random((2, 4))    out = model.predict([x1, x2])    assert out.shape == (2, 1)    expected = np.zeros((2, 1))    expected[0, 0] = np.dot(x1[0], x2[0])    expected[1, 0] = np.dot(x1[1], x2[1])    assert_allclose(out, expected, atol=1e-4)    # Test with negative tuple of axes.    o = layers.dot([i1, i2], axes=(-1, -1))    assert o._keras_shape == (None, 1)    model = models.Model([i1, i2], o)    out = model.predict([x1, x2])    assert out.shape == (2, 1)    assert_allclose(out, expected, atol=1e-4) 
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:29,代码来源:merge_test.py


示例5: create_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import dot [as 别名]def create_model(self):                dat_input = Input(shape=(self.tdatlen,))        com_input = Input(shape=(self.comlen,))        sml_input = Input(shape=(self.smllen,))                ee = Embedding(output_dim=self.embdims, input_dim=self.tdatvocabsize, mask_zero=False)(dat_input)        se = Embedding(output_dim=self.smldims, input_dim=self.smlvocabsize, mask_zero=False)(sml_input)        se_enc = CuDNNGRU(self.recdims, return_state=True, return_sequences=True)        seout, state_sml = se_enc(se)        enc = CuDNNGRU(self.recdims, return_state=True, return_sequences=True)        encout, state_h = enc(ee, initial_state=state_sml)                de = Embedding(output_dim=self.embdims, input_dim=self.comvocabsize, mask_zero=False)(com_input)        dec = CuDNNGRU(self.recdims, return_sequences=True)        decout = dec(de, initial_state=state_h)        attn = dot([decout, encout], axes=[2, 2])        attn = Activation('softmax')(attn)        context = dot([attn, encout], axes=[2, 1])        ast_attn = dot([decout, seout], axes=[2, 2])        ast_attn = Activation('softmax')(ast_attn)        ast_context = dot([ast_attn, seout], axes=[2, 1])        context = concatenate([context, decout, ast_context])        out = TimeDistributed(Dense(self.recdims, activation="relu"))(context)        out = Flatten()(out)        out = Dense(self.comvocabsize, activation="softmax")(out)                model = Model(inputs=[dat_input, com_input, sml_input], outputs=out)        if self.config['multigpu']:            model = keras.utils.multi_gpu_model(model, gpus=2)                model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])        return self.config, model 
开发者ID:mcmillco,项目名称:funcom,代码行数:43,代码来源:ast_attendgru_xtra.py


示例6: bi_modal_attention

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import dot [as 别名]def bi_modal_attention(x, y):        '''     .  stands for dot product     *  stands for elemwise multiplication    {} stands for concatenation            m1 = x . transpose(y) ||  m2 = y . transpose(x)     n1 = softmax(m1)      ||  n2 = softmax(m2)    o1 = n1 . y           ||  o2 = m2 . x    a1 = o1 * x           ||  a2 = o2 * y           return {a1, a2}            '''         m1 = dot([x, y], axes=[2, 2])    n1 = Activation('softmax')(m1)    o1 = dot([n1, y], axes=[2, 1])    a1 = multiply([o1, x])    m2 = dot([y, x], axes=[2, 2])    n2 = Activation('softmax')(m2)    o2 = dot([n2, x], axes=[2, 1])    a2 = multiply([o2, y])    return concatenate([a1, a2]) 
开发者ID:soujanyaporia,项目名称:contextual-multimodal-fusion,代码行数:29,代码来源:trimodal_attention_models.py


示例7: eltwise

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import dot [as 别名]def eltwise(layer, layer_in, layerId):    out = {}    if (layer['params']['layer_type'] == 'Multiply'):        # This input reverse is to handle visualization        out[layerId] = multiply(layer_in[::-1])    elif (layer['params']['layer_type'] == 'Sum'):        out[layerId] = add(layer_in[::-1])    elif (layer['params']['layer_type'] == 'Average'):        out[layerId] = average(layer_in[::-1])    elif (layer['params']['layer_type'] == 'Dot'):        out[layerId] = dot(layer_in[::-1], -1)    else:        out[layerId] = maximum(layer_in[::-1])    return out 
开发者ID:Cloud-CV,项目名称:Fabrik,代码行数:16,代码来源:layers_export.py


示例8: skipgram_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import dot [as 别名]def skipgram_model(vocab_size, embedding_dim=100, paradigm='Functional'):    # Sequential paradigm    if paradigm == 'Sequential':        target = Sequential()        target.add(Embedding(vocab_size, embedding_dim, input_length=1))        context = Sequential()        context.add(Embedding(vocab_size, embedding_dim, input_length=1))        # merge the pivot and context models        model = Sequential()        model.add(Merge([target, context], mode='dot'))        model.add(Reshape((1,), input_shape=(1,1)))        model.add(Activation('sigmoid'))        model.compile(optimizer='adam', loss='binary_crossentropy')        return model    # Functional paradigm    elif paradigm == 'Functional':        target = Input(shape=(1,), name='target')        context = Input(shape=(1,), name='context')        #print target.shape, context.shape        shared_embedding = Embedding(vocab_size, embedding_dim, input_length=1, name='shared_embedding')        embedding_target = shared_embedding(target)        embedding_context = shared_embedding(context)        #print embedding_target.shape, embedding_context.shape        merged_vector = dot([embedding_target, embedding_context], axes=-1)        reshaped_vector = Reshape((1,), input_shape=(1,1))(merged_vector)        #print merged_vector.shape        prediction = Dense(1, input_shape=(1,), activation='sigmoid')(reshaped_vector)        #print prediction.shape        model = Model(inputs=[target, context], outputs=prediction)        model.compile(optimizer='adam', loss='binary_crossentropy')        return model    else:        print('paradigm error')        return None 
开发者ID:lujiaying,项目名称:MovieTaster-Open,代码行数:41,代码来源:keras_item2vec.py


万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。