您当前的位置:首页 > IT编程 > Keras
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Python layers.LocallyConnected1D方法代码示例

51自学网 2020-12-01 11:09:18
  Keras
这篇教程Python layers.LocallyConnected1D方法代码示例写得很实用,希望能帮到您。

本文整理汇总了Python中keras.layers.LocallyConnected1D方法的典型用法代码示例。如果您正苦于以下问题:Python layers.LocallyConnected1D方法的具体用法?Python layers.LocallyConnected1D怎么用?Python layers.LocallyConnected1D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.layers的用法示例。

在下文中一共展示了layers.LocallyConnected1D方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_keras_import

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import LocallyConnected1D [as 别名]def test_keras_import(self):        # Conv 1D        model = Sequential()        model.add(LocallyConnected1D(32, 3, kernel_regularizer=regularizers.l2(0.01),                                     bias_regularizer=regularizers.l2(0.01),                                     activity_regularizer=regularizers.l2(0.01), kernel_constraint='max_norm',                                     bias_constraint='max_norm', activation='relu', input_shape=(16, 10)))        model.build()        self.keras_param_test(model, 1, 12)        # Conv 2D        model = Sequential()        model.add(LocallyConnected2D(32, (3, 3), kernel_regularizer=regularizers.l2(0.01),                                     bias_regularizer=regularizers.l2(0.01),                                     activity_regularizer=regularizers.l2(0.01), kernel_constraint='max_norm',                                     bias_constraint='max_norm', activation='relu', input_shape=(16, 16, 10)))        model.build()        self.keras_param_test(model, 1, 14)# ********** Recurrent Layers ********** 
开发者ID:Cloud-CV,项目名称:Fabrik,代码行数:22,代码来源:test_views.py


示例2: localconv1d

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import LocallyConnected1D [as 别名]def localconv1d(x, filters, kernel_size, strides=1, use_bias=True, name=None):    """LocallyConnected1D possibly wrapped by a TimeDistributed layer."""    f = LocallyConnected1D(filters, kernel_size, strides=strides,            use_bias=use_bias, name=name)    return TimeDistributed(f, name=name)(x) if K.ndim(x) == 4 else f(x) 
开发者ID:dluvizon,项目名称:deephar,代码行数:8,代码来源:layers.py


示例3: add_conv_layer

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import LocallyConnected1D [as 别名]def add_conv_layer(model, layer_params, input_dim=None, locally_connected=False):    if len(layer_params) == 3: # 1D convolution        filters = layer_params[0]        filter_len = layer_params[1]        stride = layer_params[2]        if locally_connected:            if input_dim:                model.add(LocallyConnected1D(filters, filter_len, strides=stride, input_shape=(input_dim, 1)))            else:                model.add(LocallyConnected1D(filters, filter_len, strides=stride))        else:            if input_dim:                model.add(Conv1D(filters, filter_len, strides=stride, input_shape=(input_dim, 1)))            else:                model.add(Conv1D(filters, filter_len, strides=stride))    elif len(layer_params) == 5: # 2D convolution        filters = layer_params[0]        filter_len = (layer_params[1], layer_params[2])        stride = (layer_params[3], layer_params[4])        if locally_connected:            if input_dim:                model.add(LocallyConnected2D(filters, filter_len, strides=stride, input_shape=(input_dim, 1)))            else:                model.add(LocallyConnected2D(filters, filter_len, strides=stride))        else:            if input_dim:                model.add(Conv2D(filters, filter_len, strides=stride, input_shape=(input_dim, 1)))            else:                model.add(Conv2D(filters, filter_len, strides=stride))    return model 
开发者ID:ECP-CANDLE,项目名称:Benchmarks,代码行数:32,代码来源:p1b3_baseline_keras2.py


示例4: locally_connected

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import LocallyConnected1D [as 别名]def locally_connected(layer, layer_in, layerId, tensor=True):    localMap = {        '1D': LocallyConnected1D,        '2D': LocallyConnected2D,    }    out = {}    kernel_initializer = layer['params']['kernel_initializer']    bias_initializer = layer['params']['bias_initializer']    filters = layer['params']['filters']    kernel_regularizer = regularizerMap[layer['params']['kernel_regularizer']]    bias_regularizer = regularizerMap[layer['params']['bias_regularizer']]    activity_regularizer = regularizerMap[layer['params']                                          ['activity_regularizer']]    kernel_constraint = constraintMap[layer['params']['kernel_constraint']]    bias_constraint = constraintMap[layer['params']['bias_constraint']]    use_bias = layer['params']['use_bias']    layer_type = layer['params']['layer_type']    if (layer_type == '1D'):        strides = layer['params']['stride_w']        kernel = layer['params']['kernel_w']    else:        strides = (layer['params']['stride_h'], layer['params']['stride_w'])        kernel = (layer['params']['kernel_h'], layer['params']['kernel_w'])    out[layerId] = localMap[layer_type](filters, kernel, strides=strides, padding='valid',                                        kernel_initializer=kernel_initializer,                                        bias_initializer=bias_initializer,                                        kernel_regularizer=kernel_regularizer,                                        bias_regularizer=bias_regularizer,                                        activity_regularizer=activity_regularizer, use_bias=use_bias,                                        bias_constraint=bias_constraint,                                        kernel_constraint=kernel_constraint)    if tensor:        out[layerId] = out[layerId](*layer_in)    return out# ********** Recurrent Layers ********** 
开发者ID:Cloud-CV,项目名称:Fabrik,代码行数:39,代码来源:layers_export.py


示例5: test_keras_export

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import LocallyConnected1D [as 别名]def test_keras_export(self):        tests = open(os.path.join(settings.BASE_DIR, 'tests', 'unit', 'keras_app',                                  'keras_export_test.json'), 'r')        response = json.load(tests)        tests.close()        net = yaml.safe_load(json.dumps(response['net']))        net = {'l0': net['Input'], 'l1': net['Input2'], 'l3': net['LocallyConnected']}        # LocallyConnected 1D        net['l1']['connection']['output'].append('l3')        net['l3']['connection']['input'] = ['l1']        net['l3']['params']['layer_type'] = '1D'        inp = data(net['l1'], '', 'l1')['l1']        temp = locally_connected(net['l3'], [inp], 'l3')        model = Model(inp, temp['l3'])        self.assertEqual(model.layers[1].__class__.__name__, 'LocallyConnected1D')        # LocallyConnected 2D        net['l0']['connection']['output'].append('l0')        net['l0']['shape']['output'] = [3, 10, 10]        net['l3']['connection']['input'] = ['l0']        net['l3']['params']['layer_type'] = '2D'        inp = data(net['l0'], '', 'l0')['l0']        temp = locally_connected(net['l3'], [inp], 'l3')        model = Model(inp, temp['l3'])        self.assertEqual(model.layers[1].__class__.__name__, 'LocallyConnected2D')# ********** Recurrent Layers Test ********** 
开发者ID:Cloud-CV,项目名称:Fabrik,代码行数:29,代码来源:test_views.py



注:本文中的keras.layers.LocallyConnected1D方法
Python layers.SpatialDropout3D方法代码示例
Python layers.GlobalAveragePooling3D方法代码示例

万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。