您当前的位置:首页 > IT编程 > Keras
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Python layers.ActivityRegularization方法代码示例

51自学网 2020-12-01 11:09:21
  Keras
这篇教程Python layers.ActivityRegularization方法代码示例写得很实用,希望能帮到您。

本文整理汇总了Python中keras.layers.ActivityRegularization方法的典型用法代码示例。如果您正苦于以下问题:Python layers.ActivityRegularization方法的具体用法?Python layers.ActivityRegularization怎么用?Python layers.ActivityRegularization使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.layers的用法示例。

在下文中一共展示了layers.ActivityRegularization方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_activity_regularization

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import ActivityRegularization [as 别名]def test_activity_regularization():    layer = layers.ActivityRegularization(l1=0.01, l2=0.01)    # test in functional API    x = layers.Input(shape=(3,))    z = layers.Dense(2)(x)    y = layer(z)    model = Model(x, y)    model.compile('rmsprop', 'mse')    model.predict(np.random.random((2, 3)))    # test serialization    model_config = model.get_config()    model = Model.from_config(model_config)    model.compile('rmsprop', 'mse') 
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:18,代码来源:core_test.py


示例2: create_simnet_network

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import ActivityRegularization [as 别名]def create_simnet_network(input_shape, weights):    L2_REGULARIZATION = 0.001    input = Input(shape=input_shape)    # CNN 1    vgg16 = create_vgg16_network(input_shape, weights)    cnn_1 = vgg16(input)    # CNN 2    # Downsample by 4:1    cnn_2 = MaxPooling2D(pool_size=(4, 4))(input)    cnn_2 = Conv2D(128, (3, 3), padding='same', activation='relu')(cnn_2)    cnn_2 = Conv2D(128, (3, 3), padding='same', activation='relu')(cnn_2)    cnn_2 = Conv2D(256, (3, 3), padding='same', activation='relu')(cnn_2)    cnn_2 = Dropout(0.5)(cnn_2)    cnn_2 = Flatten()(cnn_2)    cnn_2 = Dense(1024, activation='relu')(cnn_2)    # CNN 3    # Downsample by 8:1    cnn_3 = MaxPooling2D(pool_size=(8, 8))(input)    cnn_3 = Conv2D(128, (3, 3), padding='same', activation='relu')(cnn_3)    cnn_3 = Conv2D(128, (3, 3), padding='same', activation='relu')(cnn_3)    cnn_3 = Dropout(0.5)(cnn_3)    cnn_3 = Flatten()(cnn_3)    cnn_3 = Dense(512, activation='relu')(cnn_3)    concat_2_3 = concatenate([cnn_2, cnn_3])    concat_2_3 = Dense(1024, activation='relu')(concat_2_3)    l2_reg = ActivityRegularization(l2=L2_REGULARIZATION)(concat_2_3)    concat_1_l2 = concatenate([cnn_1, l2_reg])    output = Dense(4096, activation='relu')(concat_1_l2)    return Model(input, output) 
开发者ID:marco-c,项目名称:autowebcompat,代码行数:38,代码来源:network.py


示例3: create_simnetlike_network

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import ActivityRegularization [as 别名]def create_simnetlike_network(input_shape, weights):    L2_REGULARIZATION = 0.005    input = Input(shape=input_shape)    # CNN 1    vgg16 = create_vgglike_network(input_shape, weights)    cnn_1 = vgg16(input)    # CNN 2    # Downsample by 4:1    cnn_2 = MaxPooling2D(pool_size=(4, 4))(input)    cnn_2 = Conv2D(32, (3, 3), padding='same', activation='relu')(cnn_2)    cnn_2 = Conv2D(32, (3, 3), padding='same', activation='relu')(cnn_2)    cnn_2 = Conv2D(64, (3, 3), padding='same', activation='relu')(cnn_2)    cnn_2 = Dropout(0.5)(cnn_2)    cnn_2 = Flatten()(cnn_2)    cnn_2 = Dense(64, activation='relu')(cnn_2)    # CNN 3    # Downsample by 8:1    cnn_3 = MaxPooling2D(pool_size=(8, 8))(input)    cnn_3 = Conv2D(16, (3, 3), padding='same', activation='relu')(cnn_3)    cnn_3 = Conv2D(16, (3, 3), padding='same', activation='relu')(cnn_3)    cnn_3 = Dropout(0.5)(cnn_3)    cnn_3 = Flatten()(cnn_3)    cnn_3 = Dense(32, activation='relu')(cnn_3)    concat_2_3 = concatenate([cnn_2, cnn_3])    concat_2_3 = Dense(128, activation='relu')(concat_2_3)    l2_reg = ActivityRegularization(l2=L2_REGULARIZATION)(concat_2_3)    concat_1_l2 = concatenate([cnn_1, l2_reg])    output = Dense(256, activation='relu')(concat_1_l2)    return Model(input, output) 
开发者ID:marco-c,项目名称:autowebcompat,代码行数:38,代码来源:network.py


示例4: regularization

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import ActivityRegularization [as 别名]def regularization(layer, layer_in, layerId, tensor=True):    l1 = layer['params']['l1']    l2 = layer['params']['l2']    out = {layerId: ActivityRegularization(l1=l1, l2=l2)}    if tensor:        out[layerId] = out[layerId](*layer_in)    return out 
开发者ID:Cloud-CV,项目名称:Fabrik,代码行数:9,代码来源:layers_export.py


示例5: test_keras_import

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import ActivityRegularization [as 别名]def test_keras_import(self):        model = Sequential()        model.add(ActivityRegularization(l1=2, input_shape=(10,)))        model.build()        self.keras_type_test(model, 0, 'Regularization') 
开发者ID:Cloud-CV,项目名称:Fabrik,代码行数:7,代码来源:test_views.py


示例6: test_keras_export

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import ActivityRegularization [as 别名]def test_keras_export(self):        tests = open(os.path.join(settings.BASE_DIR, 'tests', 'unit', 'keras_app',                                  'keras_export_test.json'), 'r')        response = json.load(tests)        tests.close()        net = yaml.safe_load(json.dumps(response['net']))        net = {'l0': net['Input3'], 'l1': net['Regularization']}        net['l0']['connection']['output'].append('l1')        inp = data(net['l0'], '', 'l0')['l0']        net = regularization(net['l1'], [inp], 'l1')        model = Model(inp, net['l1'])        self.assertEqual(model.layers[1].__class__.__name__, 'ActivityRegularization') 
开发者ID:Cloud-CV,项目名称:Fabrik,代码行数:14,代码来源:test_views.py


万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。