您当前的位置:首页 > IT编程 > TensorFlow
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:tf.keras.optimizers.SGD

51自学网 2020-01-11 23:12:42
  TensorFlow
这篇教程tf.keras.optimizers.SGD写得很实用,希望能帮到您。
tf.keras.optimizers.SGD

Class SGD

Stochastic gradient descent and momentum optimizer.

Inherits From: Optimizer

Aliases: tf.optimizers.SGD

Used in the guide:

Used in the tutorials:

Computes:

theta(t+1) = theta(t) - learning_rate * gradient
gradient is evaluated at theta(t).

or Computes (if nesterov = False):

v(t+1) = momentum * v(t) - learning_rate * gradient
theta(t+1) = theta(t) + v(t+1)
if `nesterov` is False, gradient is evaluated at theta(t).
if `nesterov` is True, gradient is evaluated at theta(t) + momentum * v(t),
  and the variables always store theta + m v instead of theta

Some of the args below are hyperparameters, where a hyperparameter is defined as a scalar Tensor, a regular Python value, or a callable (which will be evaluated when apply_gradients is called) returning a scalar Tensor or a Python value.

References

nesterov = True, See [Sutskever et al., 2013](
  http://jmlr.org/proceedings/papers/v28/sutskever13.pdf).

Eager Compatibility

When eager execution is enabled, learning_rate can be a callable that takes no arguments and returns the actual value to use. This can be useful for changing these values across different invocations of optimizer functions.

__init__

View source

__init__(
    learning_rate=0.01,
    momentum=0.0,
    nesterov=False,
    name='SGD',
    **kwargs
)

Construct a new Stochastic Gradient Descent or Momentum optimizer.

Arguments:

  • learning_rate: float hyperparameter >= 0. Learning rate.
  • momentum: float hyperparameter >= 0 that accelerates SGD in the relevant direction and dampens oscillations.
  • nesterov: boolean. Whether to apply Nesterov momentum.
  • name: Optional name prefix for the operations created when applying gradients. Defaults to 'SGD'.
  • **kwargs: keyword arguments. Allowed to be {clipnorm, clipvalue, lr, decay}. clipnorm is clip gradients by norm; clipvalue is clip gradients by value, decay is included for backward compatibility to allow time inverse decay of learning rate. lr is included for backward compatibility, recommended to use learning_rate instead.

Properties

iterations

Variable. The number of training steps this Optimizer has run.

weights

Returns variables of this Optimizer based on the order created.

Methods

add_slot

View source

add_slot(
    var,
    slot_name,
    initializer='zeros'
)

Add a new slot variable for var.

add_weight

View source

add_weight(
    name,
    shape,
    dtype=None,
    initializer='zeros',
    trainable=None,
    synchronization=tf.VariableSynchronization.AUTO,
    aggregation=tf.compat.v1.VariableAggregation.NONE
)

apply_gradients

View source

apply_gradients(
    grads_and_vars,
    name=None
)

Apply gradients to variables.

This is the second part of minimize(). It returns an Operation that applies gradients.

Args:

  • grads_and_vars: List of (gradient, variable) pairs.
  • name: Optional name for the returned operation. Default to the name passed to the Optimizer constructor.

Returns:

An Operation that applies the specified gradients. The iterations will be automatically increased by 1.

Raises:

  • TypeError: If grads_and_vars is malformed.
  • ValueError: If none of the variables have gradients.

from_config

View source

from_config(
    cls,
    config,
    custom_objects=None
)

Creates an optimizer from its config.

This method is the reverse of get_config, capable of instantiating the same optimizer from the config dictionary.

Arguments:

  • config: A Python dictionary, typically the output of get_config.
  • custom_objects: A Python dictionary mapping names to additional Python objects used to create this optimizer, such as a function used for a hyperparameter.

Returns:

An optimizer instance.

get_config

View source

get_config()

Returns the config of the optimimizer.

An optimizer config is a Python dictionary (serializable) containing the configuration of an optimizer. The same optimizer can be reinstantiated later (without any saved state) from this configuration.

Returns:

Python dictionary.

get_gradients

View source

get_gradients(
    loss,
    params
)

Returns gradients of loss with respect to params.

Arguments:

  • loss: Loss tensor.
  • params: List of variables.

Returns:

List of gradient tensors.

Raises:

  • ValueError: In case any gradient cannot be computed (e.g. if gradient function not implemented).

get_slot

View source

get_slot(
    var,
    slot_name
)

get_slot_names

View source

get_slot_names()

A list of names for this optimizer's slots.

get_updates

View source

get_updates(
    loss,
    params
)

get_weights

View source

get_weights()

minimize

View source

minimize(
    loss,
    var_list,
    grad_loss=None,
    name=None
)

Minimize loss by updating var_list.

This method simply computes gradient using tf.GradientTape and calls apply_gradients(). If you want to process the gradient before applying then call tf.GradientTape and apply_gradients() explicitly instead of using this function.

Args:

  • loss: A callable taking no arguments which returns the value to minimize.
  • var_list: list or tuple of Variable objects to update to minimize loss, or a callable returning the list or tuple of Variable objects. Use callable when the variable list would otherwise be incomplete before minimize since the variables are created at the first time loss is called.
  • grad_loss: Optional. A Tensor holding the gradient computed for loss.
  • name: Optional name for the returned operation.

Returns:

An Operation that updates the variables in var_list. The iterations will be automatically increased by 1.

Raises:

  • ValueError: If some of the variables are not Variable objects.

set_weights

View source

set_weights(weights)

variables

View source

variables()

Returns variables of this Optimizer based on the order created.

Compat aliases


Nesterov加速和Momentum动量方法
实战|手把手教你训练一个基于Keras的多标签图像分类器
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。