from sklearn.model_selection import KFold
			import numpy as np
			X=np.array([[1,2],[3,4],[1,3],[3,5]])
			Y=np.array([1,2,3,4])
			KF=KFold(n_splits=2) 
			for train_index,test_index in KF.split(X):
			  print("TRAIN:",train_index,"TEST:",test_index)
			  X_train,X_test=X[train_index],X[test_index]
			  Y_train,Y_test=Y[train_index],Y[test_index]
			  print(X_train,X_test)
			  print(Y_train,Y_test)
			
			 
			
			import numpy as np
			from sklearn.model_selection import KFold
			
			Sam=np.array(np.random.randn(1000)) 
			New_sam=KFold(n_splits=5)
			for train_index,test_index in New_sam.split(Sam): 
			
			  
			  Sam_train,Sam_test=Sam[train_index],Sam[test_index]
			  print('训练集数量:',Sam_train.shape,'测试集数量:',Sam_test.shape) 
			 
			 
			
			from sklearn.model_selection import StratifiedKFold
			import numpy as np
			m=np.array([[1,2],[3,5],[2,4],[5,7],[3,4],[2,7]])
			n=np.array([0,0,0,1,1,1])
			skf=StratifiedKFold(n_splits=3)
			for train_index,test_index in skf.split(m,n):
			  print("train",train_index,"test",test_index)
			  x_train,x_test=m[train_index],m[test_index]
			
			from sklearn.model_selection import StratifiedKFold
			import numpy as np
			y1=np.array(range(10))
			y2=np.array(range(20,30))
			y3=np.array(np.random.randn(10))
			m=np.append(y1,y2) 
			m1=np.append(m,y3)
			n=[i//10 for i in range(30)] 
			 
			skf=StratifiedKFold(n_splits=5)
			for train_index,test_index in skf.split(m1,n):
			  print("train",train_index,"test",test_index)
			  x_train,x_test=m1[train_index],m1[test_index]