CIFAR-10数据集是一个包含了60000张32×32的RGB图像数据集,所有图像共被划分为10个类别,分别为:
['飞机', '汽车', '鸟', '猫', '鹿', '狗', '青蛙', '马', '船', '卡车']
['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
程序编写
1 文件夹建立
步骤一:首先我们在桌面(也可为其他路径)路径下建立一个名为cifar10的空文件夹;
步骤二:在cifar10文件夹下建立train和test文件夹;
步骤三:分别在train和test文件夹下建立10个与图像类别名称相同的空文件夹。
2 程序编写
对训练集数据进行图像保存的程序如下所示:
from keras.datasets import cifar10
from PIL import Image
"""
数据集下载与加载(利用KerasAPI)
"""
(x_train_original, y_train_original), (x_test_original, y_test_original) = cifar10.load_data()
root_path = 'C:\\Users\\Lenovo\\Desktop\\cifar10\\'
def mnist_train_save():
for i in range(60000):
print(i)
if (y_train_original[i] == 0):
img = Image.fromarray(x_train_original[i])
img.save(root_path + 'train\\airplane\\' + str(i) + '.jpg')
elif (y_train_original[i] == 1):
img = Image.fromarray(x_train_original[i])
img.save(root_path + 'train\\automobile\\' + str(i) + '.jpg')
elif (y_train_original[i] == 2):
img = Image.fromarray(x_train_original[i])
img.save(root_path + 'train\\bird\\' + str(i) + '.jpg')
elif (y_train_original[i] == 3):
img = Image.fromarray(x_train_original[i])
img.save(root_path + 'train\\cat\\' + str(i) + '.jpg')
elif (y_train_original[i] == 4):
img = Image.fromarray(x_train_original[i])
img.save(root_path + 'train\\deer\\' + str(i) + '.jpg')
elif (y_train_original[i] == 5):
img = Image.fromarray(x_train_original[i])
img.save(root_path + 'train\\dog\\' + str(i) + '.jpg')
elif (y_train_original[i] == 6):
img = Image.fromarray(x_train_original[i])
img.save(root_path + 'train\\frog\\' + str(i) + '.jpg')
elif (y_train_original[i] == 7):
img = Image.fromarray(x_train_original[i])
img.save(root_path + 'train\\horse\\' + str(i) + '.jpg')
elif (y_train_original[i] == 8):
img = Image.fromarray(x_train_original[i])
img.save(root_path + 'train\\ship\\' + str(i) + '.jpg')
else:
img = Image.fromarray(x_train_original[i])
img.save(root_path + 'train\\truck\\' + str(i) + '.jpg')
mnist_train_save()
print('图片保存完成')
对测试集数据进行图像保存的程序只需要把程序中的train改成test即可。