import cv2
import matplotlib.pyplot as plt
import numpy as np
from keras import backend as K
from keras.preprocessing import image
def heatmap(model, data_img, layer_idx, img_show=None, pred_idx=None):
if data_img.shape.__len__() != 4:
if img_show is None:
img_show = data_img
input_shape = K.int_shape(model.input)[1:3]
data_img = image.img_to_array(image.array_to_img(data_img).resize(input_shape))
data_img = np.expand_dims(data_img, axis=0)
if pred_idx is None:
preds = model.predict(data_img)
pred_idx = np.argmax(preds[0])
target_output = model.output[:, pred_idx]
last_conv_layer_output = model.layers[layer_idx].output
grads = K.gradients(target_output, last_conv_layer_output)[0]
pooled_grads = K.mean(grads, axis=(0, 1, 2))
iterate = K.function([model.input], [pooled_grads, last_conv_layer_output[0]])
pooled_grads_value, conv_layer_output_value = iterate([data_img])
for i in range(conv_layer_output_value.shape[-1]):
conv_layer_output_value[:, :, i] *= pooled_grads_value[i]
heatmap = np.mean(conv_layer_output_value, axis=-1)
heatmap = np.maximum(heatmap, 0)
heatmap /= np.max(heatmap)
heatmap = cv2.resize(heatmap, (img_show.shape[1], img_show.shape[0]))
heatmap = np.uint8(255 * heatmap)
superimposed_img = img_show + cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)[:,:,::-1] * 0.4
superimposed_img = np.minimum(superimposed_img, 255).astype('uint8')
return superimposed_img, heatmap
def heatmaps(model, data_img, img_show=None):
if img_show is None:
img_show = np.array(data_img)
input_shape = K.int_shape(model.input)[1:3]
data_img = image.img_to_array(image.array_to_img(data_img).resize(input_shape))
data_img = np.expand_dims(data_img, axis=0)
preds = model.predict(data_img)
pred_idx = np.argmax(preds[0])
print("预测为:%d(%f)" % (pred_idx, preds[0][pred_idx]))
indexs = []
for i in range(model.layers.__len__()):
if 'conv' in model.layers[i].name:
indexs.append(i)
print('模型共有%d个卷积层' % indexs.__len__())
plt.suptitle('heatmaps for each conv')
for i in range(indexs.__len__()):
ret = heatmap(model, data_img, indexs[i], img_show=img_show, pred_idx=pred_idx)
plt.subplot(np.ceil(np.sqrt(indexs.__len__()*2)), np.ceil(np.sqrt(indexs.__len__()*2)), i*2 + 1)\
.set_title(model.layers[indexs[i]].name)
plt.imshow(ret[0])
plt.axis('off')
plt.subplot(np.ceil(np.sqrt(indexs.__len__()*2)), np.ceil(np.sqrt(indexs.__len__()*2)), i*2 + 2)\
.set_title(model.layers[indexs[i]].name)
plt.imshow(ret[1])
plt.axis('off')
plt.show()