您当前的位置:首页 > IT编程 > 深度学习
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:tensorflow2实现resnet18和50网络,最少代码

51自学网 2020-12-03 15:32:29
  深度学习
这篇教程tensorflow2实现resnet18和50网络,最少代码写得很实用,希望能帮到您。
这两个模型我已经在我的数据集(一个4分类的1600张118*118的关于上下左右箭头分类的图片上)试验过了,均可以达到100%的accuracy,因此,模型应该是没有问题的 好了,话不多说,代码奉上
resnet18:

import tensorflow as tf
import numpy as np
import os
from tensorflow import keras
from tensorflow.keras import layers,Sequential

class prepare(layers.Layer):
    def __init__(self):
        super(prepare, self).__init__()
        self.conv1=layers.Conv2D(64,(3,3),strides=1,padding="same")
        self.bn=layers.BatchNormalization()
        self.Relu=layers.Activation('relu')
        self.mp=layers.MaxPool2D(pool_size=(2,2),strides=2)
            
    def call(self,inputs):
        x=self.conv1(inputs)
        x=self.bn(x)
        x=self.Relu(x)
        x=self.mp(x)
        return x
class BasicBlock(layers.Layer):
    def __init__(self,filter_num,stride=1):
        super(BasicBlock, self).__init__()
        self.conv1=layers.Conv2D(filter_num,(3,3),strides=stride,padding='same')
        self.bn1=layers.BatchNormalization()
        self.relu=layers.Activation('relu')
        self.conv2=layers.Conv2D(filter_num,(3,3),strides=1,padding='same')
        self.bn2 = layers.BatchNormalization()

        if stride!=1:
            self.downsample=Sequential()
            self.downsample.add(layers.Conv2D(filter_num,(1,1),strides=stride))
        else:
            self.downsample=lambda x:x
    def call(self,input,training=None):
        out=self.conv1(input)
        out=self.bn1(out)
        out=self.relu(out)

        out=self.conv2(out)
        out=self.bn2(out)

        identity=self.downsample(input)
        output=layers.add([out,identity])
        output=tf.nn.relu(output)
        return output
def get_model(num_classes):
    
    input_image = layers.Input(shape=(112, 112, 3), dtype="float32")
    output=prepare()(input_image)
    output=BasicBlock(64)(output)
    output=BasicBlock(64)(output)
    output=BasicBlock(128,2)(output)
    output=BasicBlock(128)(output)
    output=BasicBlock(256,2)(output)
    output=BasicBlock(256)(output)
    output=BasicBlock(512,2)(output)
    output=BasicBlock(512)(output)
    output=layers.GlobalAveragePooling2D()(output)
    output=layers.Dense(num_classes)(output)
    output-layers.Activation('relu')(output)
    return  keras.Model(inputs=input_image, outputs=output)

 

 

 resnet50:

import tensorflow as tf
import numpy as np
import os
from tensorflow import keras
from tensorflow.keras import layers,Sequential

class prepare(layers.Layer):
    
    def __init__(self):
        super(prepare, self).__init__()
        self.conv1=layers.Conv2D(64,(3,3),strides=1,padding="same")
        self.bn=layers.BatchNormalization()
        self.Relu=layers.Activation('relu')
        self.mp=layers.MaxPool2D(pool_size=(2,2),strides=2)
            
    def call(self,inputs):
        x=self.conv1(inputs)
        x=self.bn(x)
        x=self.Relu(x)
        x=self.mp(x)
        return x
class block(layers.Layer):    
    def __init__(self,filter_num,stride=1,is_first=False):
        super(block,self).__init__()
        self.conv1=layers.Conv2D(filter_num,(1,1),strides=1)
        self.bn1=layers.BatchNormalization()
        
        self.conv2=layers.Conv2D(filter_num,(3,3),strides=stride,padding='same')
        self.bn2=layers.BatchNormalization()
        
        self.conv3=layers.Conv2D(filter_num*4,(1,1),strides=1)
        self.bn3=layers.BatchNormalization()
        
        self.relu=layers.Activation('relu')
        if stride!=1 or is_first==True:
            self.downsample=Sequential()
            self.downsample.add(layers.Conv2D(filter_num*4,(1,1),strides=stride))
        else:
            self.downsample=lambda x:x
    def call(self,inputs):
        x=self.conv1(inputs)
        x=self.bn1(x)
        x=self.relu(x)
        
        x=self.conv2(x)
        x=self.bn2(x)
        x=self.relu(x)
        
        x=self.conv3(x)
        x=self.bn3(x)
        
        identity=self.downsample(inputs)
        output=layers.add([x,identity])
        output=tf.nn.relu(output)
        return output
        
def get_model(num_classes):
    input_image = layers.Input(shape=(112, 112, 3), dtype="float32")
    out=prepare()(input_image)
    out=block(64,is_first=True)(out)
    out=block(64)(out)
    out=block(64)(out)
    out=block(128,stride=2)(out)
    out=block(128)(out)
    out=block(128)(out)
    out=block(256,stride=2)(out)
    out=block(256)(out)
    out=block(256)(out)
    out=block(512,stride=2)(out)
    out=block(512)(out)
    out=block(512)(out)
    out=layers.GlobalAveragePooling2D()(out)
    out=layers.Dense(num_classes)(out)
    out-layers.Activation('relu')(out)
    return keras.Model(inputs=input_image, outputs=out)
 

需要注意的是,prepare类是对数据的预处理,论文是先使用7x7的过滤器的,我这里使用的是3x3,因为我输入的图片是

112*112大小的,如果需要改的话改prepare就行了

 

 

以上就是resnet的tensorflow1实现,代码是不是可以接受呢,是不是能看懂呢,

只要输入model=get_model(num_classes)就能得到模型拉,num_calsses是你分类的数量

之后定义好损失函数,使用fit训练就可以了,


who is the best in CIFAR-10 ?
基于Keras的ResNet实现
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。