这篇教程keras, TensorFlow中加入注意力机制写得很实用,希望能帮到您。
keras, TensorFlow中加入注意力机制原文:https://blog.csdn.net/qq_38410428/article/details/103695032
第一步:找到要修改文件的源代码
在里面添加通道注意力机制和空间注意力机制
所需库
from keras.layers import GlobalAveragePooling2D, GlobalMaxPooling2D, Reshape, Dense, multiply, Permute, Concatenate, Conv2D, Add, Activation, Lambda
from keras import backend as K
from keras.activations import sigmoid
通道注意力机制
def channel_attention(input_feature, ratio=8):
channel_axis = 1 if K.image_data_format() == "channels_first" else -1
channel = input_feature._keras_shape[channel_axis]
shared_layer_one = Dense(channel//ratio,
kernel_initializer='he_normal',
activation = 'relu',
use_bias=True,
bias_initializer='zeros')
shared_layer_two = Dense(channel,
kernel_initializer='he_normal',
use_bias=True,
bias_initializer='zeros')
avg_pool = GlobalAveragePooling2D()(input_feature)
avg_pool = Reshape((1,1,channel))(avg_pool)
assert avg_pool._keras_shape[1:] == (1,1,channel)
avg_pool = shared_layer_one(avg_pool)
assert avg_pool._keras_shape[1:] == (1,1,channel//ratio)
avg_pool = shared_layer_two(avg_pool)
assert avg_pool._keras_shape[1:] == (1,1,channel)
max_pool = GlobalMaxPooling2D()(input_feature)
max_pool = Reshape((1,1,channel))(max_pool)
assert max_pool._keras_shape[1:] == (1,1,channel)
max_pool = shared_layer_one(max_pool)
assert max_pool._keras_shape[1:] == (1,1,channel//ratio)
max_pool = shared_layer_two(max_pool)
assert max_pool._keras_shape[1:] == (1,1,channel)
cbam_feature = Add()([avg_pool,max_pool])
cbam_feature = Activation('hard_sigmoid')(cbam_feature)
if K.image_data_format() == "channels_first":
cbam_feature = Permute((3, 1, 2))(cbam_feature)
return multiply([input_feature, cbam_feature])
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
空间注意力机制
def spatial_attention(input_feature):
kernel_size = 7
if K.image_data_format() == "channels_first":
channel = input_feature._keras_shape[1]
cbam_feature = Permute((2,3,1))(input_feature)
else:
channel = input_feature._keras_shape[-1]
cbam_feature = input_feature
avg_pool = Lambda(lambda x: K.mean(x, axis=3, keepdims=True))(cbam_feature)
assert avg_pool._keras_shape[-1] == 1
max_pool = Lambda(lambda x: K.max(x, axis=3, keepdims=True))(cbam_feature)
assert max_pool._keras_shape[-1] == 1
concat = Concatenate(axis=3)([avg_pool, max_pool])
assert concat._keras_shape[-1] == 2
cbam_feature = Conv2D(filters = 1,
kernel_size=kernel_size,
activation = 'hard_sigmoid',
strides=1,
padding='same',
kernel_initializer='he_normal',
use_bias=False)(concat)
assert cbam_feature._keras_shape[-1] == 1
if K.image_data_format() == "channels_first":
cbam_feature = Permute((3, 1, 2))(cbam_feature)
return multiply([input_feature, cbam_feature])
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
构建CBAM
def cbam_block(cbam_feature,ratio=8):
"""Contains the implementation of Convolutional Block Attention Module(CBAM) block.
As described in https://arxiv.org/abs/1807.06521.
"""
cbam_feature = channel_attention(cbam_feature, ratio)
cbam_feature = spatial_attention(cbam_feature, )
return cbam_feature
在相应的位置添加CBAM
inputs = x
residual = layers.Conv2D(filter, kernel_size = (1, 1), strides = strides, padding = 'same')(inputs)
residual = layers.BatchNormalization(axis = bn_axis)(residual)
cbam = cbam_block(residual)
x = layers.add([x, residual, cbam])
这样就在任意位置加入了注意力机制啦。 CNN图像语义分割详解大全(网络收集转载) 华为云比赛-垃圾分类挑战-数据集、源代码解析与下载 |