数学学习=90%的理解+10%的记忆,数学记忆无非包括了:概念、原理、公式、定理、数字等,非常枯燥且难。你想知道怎么记住数学知识吗?现在,51自学小编来告诉你数学知识的19种记忆方法。 数学记忆方法1.口诀记忆法 数学记忆方法2.形象记忆法 数学记忆方法3.表格记忆法 数学记忆方法4.联想记忆法 数学记忆方法5.分类记忆法 数学记忆方法6.“四多”记忆法 数学记忆方法7.静心记忆法 数学记忆方法8.首次记忆法 数学记忆方法9.重复记忆 数学记忆方法10.理解记忆法 数学记忆方法11.系统记忆法 数学记忆方法12.简化记忆法 数学记忆方法13.联合记忆 数学记忆方法14.意趣记忆 数学记忆方法15.对比记忆法 数学记忆方法16.逻辑记忆法 数学记忆方法17.交替记忆法 数学记忆方法18.分布记忆法 数学记忆方法19.循环记忆法 数学知识方法顺口溜 |
记忆法 中学数学中,有些方法如果能编成顺口溜或歌诀,可以帮助记忆。例如,根据一元二次不等式ax2+bx+c>0(a>0,△>0)与ax2+bx+c<0(a>0,△>0)的解法,可编成乘积或分式不等式的解法口诀:“两大写两旁,两小写中间”。即两个一次因式之积(或商)大于0,解答在两根之外;两个一次因式之积(或商)小于0,解答在两根之内。当然,使用口诀时,必先将各个一次因式中X的系数化为正数。利用口诀时,必先将各个一次因式中X的系数化为正数。利用这一口诀,我们就很容易写出乘积。 >>>返回目录 函数y=asinx+bcosx(a>0,b>0)为一个角的三角函数,可以用a、b为直角边作数和对数函数的图象,可帮助记忆其性质、定义域和值域;利用三角函数的图象,可帮助记忆三角函数的性质、符号、定义、值域、增减性、周期性、被值;利用二次函数的图象,可帮助记忆抛物线的性质——开口、顶点、对称轴和极值。>>>返回目录 表格记忆法 有些知识借助表格也能帮助记忆。例如,0°、30°、45°、60°、90°等特殊角的三角函数值;等差与等比数列的定义、一般形式、通项公式an、前n项的和sn性质及注意事项;指数与对数函数的定义、图象、定义域、值域及性质;反三角函数的定义、图象、定义域、主值区间、增减性及有关公式;最简三角方程的通值公式等等,都可以用表格帮助记忆。有些数学题的解题方法,也可以用表格化难为易、驭繁为简。例如,用列表法解乘积或分式不等式,解含绝对值符号的方程或不等式,计算多项式的乘法,求整系数方程的有理根等等,都是很好的方法,这种记忆法在复习中尤其应该提倡。 >>>返回目录 >>>返回目录 分类记忆法 遇到数学公式较多,一时难于记忆时,可以将这些公式适当分组。例如求导公式有18个,就可以分成四组来记:(1)常数与幂函数的导数(2个);(2)指数与对数函数的导数(4个);(3)三角函数的导数(6个);(4)反三角函数的导数(6个)。求导法则有7个,可分为两组来记:(1)和差、积、商复合函数的导数(4个);(2)反函数、隐函数、幂指函数的导数(3个)。 >>>返回目录 >>>返回目录 记忆力好;有人感到晚上记忆力好;有人习惯于边走边读边记;有人则要在安静的环境下记忆才好等等。不管选择何种方式记忆,都必须保持“心静”。心静才能集中注意力记忆,心静才能形成记忆的优势兴奋中心,记忆需从静始!>>>返回目录 >>>返回目录 大脑回想达到重复记忆的目的,这种记忆称为回想记忆,在实际记忆时,回想记忆法与标志记忆法是配合使用的。 3)使用记忆法。在解数学题时,必须用到已记住的知识,使用一次有关知识就被重复记忆一次,这种记忆称为使用记忆。使用记忆法是积极的记忆,效果好。 >>>返回目录 逻辑学基础上的一门学科,它的概念、法则的建立,定理的论证,公式的推导,无不处于一定的逻辑体系之中,因此,对于数学知识的理解记忆,主要在于弄清数学知识的逻辑联系,把握它的来龙去脉,只有理解了的东西才能牢固记住它。因此,数学中的定理、公式、法则,都必须弄通它的来龙去脉,弄懂它们的证明过程,以便牢固记住它们。 用好这一方法的关键,在于学习要注意理解,这一方法,不仅对于数学学习,就是对于其它学科的学习都有着广泛的应用。应十分重视。 >>>返回目录 >>>返回目录 筛选出记忆目标中具有代表性的部分,用以取代记忆目标的整体,是简化记忆的又一常用方法。三角函数的积化和差与和差化积公式各有四个,可利用两角和与差的正余弦公式,由一组中的四个导出另一组中的四个,因而可着重记忆积化的差公式即可。 4)取名简化。给记忆目标取一个形象的名字,可顾名释义,记起这个记忆目标。例如,对不等式|a|-|b|≤|a±b|≤|a|+|b|,针对其特征,设某三角形的三边之长分别为|a|、|b|、|a±b|,由于三角形的三边关系(两边之和大于第三边,两边之差小于第三边)满足这个不等式,故给其取名为“三角形不等式”。 5)转换简化。把复杂难记的记忆目标甲,转换为简单易记或早已熟记的事物乙,把乙连同甲与乙相互转换的方法,作为新的记忆目标记忆。当需用甲时,大脑会同时再现出甲、乙及甲与乙的转换方法,此时甲往往是模糊的,而乙却是清晰的,转换乙便得到了清晰的甲,如万能公式,可利用图所示的Rt△的边角关系记忆: >>>返回目录 >>>返回目录 >>>返回目录 物理模型、相似或相互对立的一些概念等等,应用对比记忆法都可收到良好的记忆效果。>>>返回目录 >>>返回目录 >>>返回目录 >>>返回目录 自学读书。当阅读一本数学书时,先读第一章并记忆其中的一些主要结果;在读第二章以后的书时,应分别简要地复读前一章书中的主要结果;读一章书也一样,应在读后节内容之前,复读一下以前各节的主要内容。这样的循环记忆,实则是在强化识记的痕迹,利于记忆的保持,自然可收到深刻记忆的效果。>>>返回目录 求和几多法?通项递推思路开; 变量分离无好坏,函数复合有内外。 同增异减定单调,区间挖隐最值来。 3、三角函数 三角定义比值生,弧度互化实数融; 同角三类善诱导,和差倍半巧变通。 解前若能三平衡,解后便有一脉承; 角值计算大化小,弦切相逢异化同。 4、方程与不等式 函数方程不等根,常使参数范围生; 一正二定三相等,均值定理最值成。 参数不定比大小,两式不同三法证; 等与不等无绝对,变量分离方有恒。 5、解析几何 联立方程解交点,设而不求巧判别; 韦达定理表弦长,斜率转化过中点。 选参建模求轨迹,曲线对称找距离; 动点相关归定义,动中求静助解析。 6、立体几何 多点共线两面交,多线共面一法巧; 空间三垂优弦大,球面两点劣弧小。 线线关系线面找,面面成角线线表; 等积转化连射影,能割善补架通桥。 7、排列与组合 分步则乘分类加,欲邻需捆欲隔插; 有序则排无序组,正难则反排除它。 元素重复连乘法,特元特位你先拿; 平均分组阶乘除,多元少位我当家。 8、二项式定理 二项乘方知多少,万里源头通项找; 展开三定项指系,组合系数杨辉角。 整除证明底变妙,二项求和特值巧; 两端对称谁最大?主峰一览众山小。 9、概率与统计 概率统计同根生,随机发生等可能; 互斥事件一枝秀,相互独立同时争。 样本总体抽样审,独立重复二项分; 随机变量分布列,期望方差论伪真。 >>>返回目录 点击进入>>> 精英特记忆训练软件免费下载 数学记忆相关文章: 1.怎样快速记忆初一数学公式 2.关于数学学科的记忆方法 3.如何快速记忆数学公式 4.高中数学记忆法:高中记忆数学知识点的好方法 5.超右脑快速记忆数学知识 6.中学数学的记忆方法 7.数学常识快速记忆口诀 8.初中数学的快速记忆法
|