您当前的位置:首页 > IT编程 > python
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:python中np.multiply()、np.dot()和星号(*)三种乘法运算的区别详解

51自学网 2021-10-30 22:48:44
  python
这篇教程python中np.multiply()、np.dot()和星号(*)三种乘法运算的区别详解写得很实用,希望能帮到您。

为了区分三种乘法运算的规则,具体分析如下:

import numpy as np

1. np.multiply()函数

函数作用

数组和矩阵对应位置相乘,输出与相乘数组/矩阵的大小一致

1.1数组场景

A = np.arange(1,5).reshape(2,2)A

array([[1, 2],
       [3, 4]])

B = np.arange(0,4).reshape(2,2)B

array([[0, 1],
       [2, 3]])

np.multiply(A,B)  #数组对应元素位置相乘

array([[ 0,  2],
       [ 6, 12]])

1.2 矩阵场景

np.multiply(np.mat(A),np.mat(B))  #矩阵对应元素位置相乘,利用np.mat()将数组转换为矩阵

matrix([[ 0,  2],
        [ 6, 12]])

np.sum(np.multiply(np.mat(A),np.mat(B))) #输出为标量

20

2. np.dot()函数

函数作用

对于秩为1的数组,执行对应位置相乘,然后再相加;

对于秩不为1的二维数组,执行矩阵乘法运算;超过二维的可以参考numpy库介绍。

2.1 数组场景

2.1.1 数组秩不为1的场景

A = np.arange(1,5).reshape(2,2)A

array([[1, 2],
       [3, 4]])

B = np.arange(0,4).reshape(2,2)B

array([[0, 1],
       [2, 3]])

np.dot(A,B) #对数组执行矩阵相乘运算

array([[ 4,  7],
       [ 8, 15]])

2.1.2 数组秩为1的场景

C = np.arange(1,4)C

array([1, 2, 3])

D = np.arange(0,3)D

array([0, 1, 2])

np.dot(C,D) #对应位置相乘,再求和

8

2.2 矩阵场景

np.dot(np.mat(A),np.mat(B)) #执行矩阵乘法运算

matrix([[ 4,  7],
        [ 8, 15]])

3. 星号(*)乘法运算

作用

对数组执行对应位置相乘

对矩阵执行矩阵乘法运算

3.1 数组场景

A = np.arange(1,5).reshape(2,2)A

array([[1, 2],
       [3, 4]])

B = np.arange(0,4).reshape(2,2)B

array([[0, 1],
       [2, 3]])

A*B #对应位置点乘

array([[ 0,  2],
       [ 6, 12]])

3.2矩阵场景

(np.mat(A))*(np.mat(B)) #执行矩阵运算

matrix([[ 4,  7],
        [ 8, 15]])

到此这篇关于python中np.multiply()、np.dot()和星号(*)三种乘法运算的区别详解的文章就介绍到这了,更多相关python np.multiply()、np.dot()和星号内容请搜索51zixue.net以前的文章或继续浏览下面的相关文章希望大家以后多多支持51zixue.net!


NumPy 矩阵乘法的实现示例
关于Python可视化Dash工具之plotly基本图形示例详解
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。