您当前的位置:首页 > IT编程 > 数据集
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 |

自学教程:Large Dataset of Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images

51自学网 2023-06-28 12:25:55
  数据集
这篇教程Large Dataset of Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images写得很实用,希望能帮到您。

Large Dataset of Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images

Published: 2 June 2018|Version 3|DOI:10.17632/rscbjbr9sj.3
Contributors:
Daniel Kermany,

,

Description

Be sure to download the most recent version of this dataset to maintain accuracy. This dataset contains thousands of validated OCT and Chest X-Ray images described and analyzed in "Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning". The images are split into a training set and a testing set of independent patients. Images are labeled as (disease)-(randomized patient ID)-(image number by this patient) and split into 4 directories: CNV, DME, DRUSEN, and NORMAL. This repository of images is made available for use in research only. How to cite this data: Kermany D, Goldbaum M, Cai W et al. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell. 2018; 172(5):1122-1131. doi:10.1016/j.cell.2018.02.010.


Download All 8042 MB

Files



ZhangLabData.zip
8 GB

Steps to reproduce

Instructions found in README

Institutions

University of California San Diego, Guangzhou Women and Children's Medical Center

Categories

Applied Sciences, Medicine, Ophthalmology, Retina, Deep Learning

Related Links

Article
http://dx.doi.org/10.1016/j.cell.2018.02.010
is related to this dataset
Other
http://zhanglab.ucsd.edu
is related to this dataset

Related Identifiers*

This dataset is supplement to
10.1016/j.cell.2018.02.010

*provided by DataCite

License


返回列表
Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images for Classification
51自学网自学EXCEL、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。
京ICP备13026421号-1