这篇教程Keras:使用 MIRNet实现低光图像增强写得很实用,希望能帮到您。 With the goal of recovering high-quality image content from its degraded version, image restoration enjoys numerous applications, such as in photography, security, medical imaging, and remote sensing. In this example, we implement the MIRNet model for low-light image enhancement, a fully-convolutional architecture that learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Low-light image enhancement using MIRNet
Author: Soumik Rakshit Date created: 2021/09/11 Last modified: 2021/09/15
View in Colab • GitHub source
Description: Implementing the MIRNet architecture for low-light image enhancement.
Introduction
With the goal of recovering high-quality image content from its degraded version, image restoration enjoys numerous applications, such as in photography, security, medical imaging, and remote sensing. In this example, we implement the MIRNet model for low-light image enhancement, a fully-convolutional architecture that learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
References:
Downloading LOLDataset
The LoL Dataset has been created for low-light image enhancement. It provides 485 images for training and 15 for testing. Each image pair in the dataset consists of a low-light input image and its corresponding well-exposed reference image.
import os
import cv2
import random
import numpy as np
from glob import glob
from PIL import Image, ImageOps
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
!gdown https://drive.google.com/uc?id=1DdGIJ4PZPlF2ikl8mNM9V-PdVxVLbQi6
!unzip -q lol_dataset.zip
Downloading...
From: https://drive.google.com/uc?id=1DdGIJ4PZPlF2ikl8mNM9V-PdVxVLbQi6
To: /content/keras-io/scripts/tmp_2614641/lol_dataset.zip
347MB [00:03, 108MB/s]
Creating a TensorFlow Dataset
We use 300 image pairs from the LoL Dataset's training set for training, and we use the remaining 185 image pairs for validation. We generate random crops of size 128 x 128 from the image pairs to be used for both training and validation.
random.seed(10)
IMAGE_SIZE = 128
BATCH_SIZE = 4
MAX_TRAIN_IMAGES = 300
def read_image(image_path):
image = tf.io.read_file(image_path)
image = tf.image.decode_png(image, channels=3)
image.set_shape([None, None, 3])
image = tf.cast(image, dtype=tf.float32) / 255.0
return image
def random_crop(low_image, enhanced_image):
low_image_shape = tf.shape(low_image)[:2]
low_w = tf.random.uniform(
shape=(), maxval=low_image_shape[1] - IMAGE_SIZE + 1, dtype=tf.int32
)
low_h = tf.random.uniform(
shape=(), maxval=low_image_shape[0] - IMAGE_SIZE + 1, dtype=tf.int32
)
enhanced_w = low_w
enhanced_h = low_h
low_image_cropped = low_image[
low_h : low_h + IMAGE_SIZE, low_w : low_w + IMAGE_SIZE
]
enhanced_image_cropped = enhanced_image[
enhanced_h : enhanced_h + IMAGE_SIZE, enhanced_w : enhanced_w + IMAGE_SIZE
]
return low_image_cropped, enhanced_image_cropped
def load_data(low_light_image_path, enhanced_image_path):
low_light_image = read_image(low_light_image_path)
enhanced_image = read_image(enhanced_image_path)
low_light_image, enhanced_image = random_crop(low_light_image, enhanced_image)
return low_light_image, enhanced_image
def get_dataset(low_light_images, enhanced_images):
dataset = tf.data.Dataset.from_tensor_slices((low_light_images, enhanced_images))
dataset = dataset.map(load_data, num_parallel_calls=tf.data.AUTOTUNE)
dataset = dataset.batch(BATCH_SIZE, drop_remainder=True)
return dataset
train_low_light_images = sorted(glob("./lol_dataset/our485/low/*"))[:MAX_TRAIN_IMAGES]
train_enhanced_images = sorted(glob("./lol_dataset/our485/high/*"))[:MAX_TRAIN_IMAGES]
val_low_light_images = sorted(glob("./lol_dataset/our485/low/*"))[MAX_TRAIN_IMAGES:]
val_enhanced_images = sorted(glob("./lol_dataset/our485/high/*"))[MAX_TRAIN_IMAGES:]
test_low_light_images = sorted(glob("./lol_dataset/eval15/low/*"))
test_enhanced_images = sorted(glob("./lol_dataset/eval15/high/*"))
train_dataset = get_dataset(train_low_light_images, train_enhanced_images)
val_dataset = get_dataset(val_low_light_images, val_enhanced_images)
print("Train Dataset:", train_dataset)
print("Val Dataset:", val_dataset)
Train Dataset: <BatchDataset shapes: ((4, None, None, 3), (4, None, None, 3)), types: (tf.float32, tf.float32)>
Val Dataset: <BatchDataset shapes: ((4, None, None, 3), (4, None, None, 3)), types: (tf.float32, tf.float32)>
MIRNet Model
Here are the main features of the MIRNet model:
- A feature extraction model that computes a complementary set of features across multiple spatial scales, while maintaining the original high-resolution features to preserve precise spatial details.
- A regularly repeated mechanism for information exchange, where the features across multi-resolution branches are progressively fused together for improved representation learning.
- A new approach to fuse multi-scale features using a selective kernel network that dynamically combines variable receptive fields and faithfully preserves the original feature information at each spatial resolution.
- A recursive residual design that progressively breaks down the input signal in order to simplify the overall learning process, and allows the construction of very deep networks.
Selective Kernel Feature Fusion
The Selective Kernel Feature Fusion or SKFF module performs dynamic adjustment of receptive fields via two operations: Fuse and Select. The Fuse operator generates global feature descriptors by combining the information from multi-resolution streams. The Select operator uses these descriptors to recalibrate the feature maps (of different streams) followed by their aggregation.
Fuse: The SKFF receives inputs from three parallel convolution streams carrying different scales of information. We first combine these multi-scale features using an element-wise sum, on which we apply Global Average Pooling (GAP) across the spatial dimension. Next, we apply a channel- downscaling convolution layer to generate a compact feature representation which passes through three parallel channel-upscaling convolution layers (one for each resolution stream) and provides us with three feature descriptors.
Select: This operator applies the softmax function to the feature descriptors to obtain the corresponding activations that are used to adaptively recalibrate multi-scale feature maps. The aggregated features are defined as the sum of product of the corresponding multi-scale feature and the feature descriptor.
def selective_kernel_feature_fusion(
multi_scale_feature_1, multi_scale_feature_2, multi_scale_feature_3
):
channels = list(multi_scale_feature_1.shape)[-1]
combined_feature = layers.Add()(
[multi_scale_feature_1, multi_scale_feature_2, multi_scale_feature_3]
)
gap = layers.GlobalAveragePooling2D()(combined_feature)
channel_wise_statistics = tf.reshape(gap, shape=(-1, 1, 1, channels))
compact_feature_representation = layers.Conv2D(
filters=channels // 8, kernel_size=(1, 1), activation="relu"
)(channel_wise_statistics)
feature_descriptor_1 = layers.Conv2D(
channels, kernel_size=(1, 1), activation="softmax"
)(compact_feature_representation)
feature_descriptor_2 = layers.Conv2D(
channels, kernel_size=(1, 1), activation="softmax"
)(compact_feature_representation)
feature_descriptor_3 = layers.Conv2D(
channels, kernel_size=(1, 1), activation="softmax"
)(compact_feature_representation)
feature_1 = multi_scale_feature_1 * feature_descriptor_1
feature_2 = multi_scale_feature_2 * feature_descriptor_2
feature_3 = multi_scale_feature_3 * feature_descriptor_3
aggregated_feature = layers.Add()([feature_1, feature_2, feature_3])
return aggregated_feature
Dual Attention Unit
The Dual Attention Unit or DAU is used to extract features in the convolutional streams. While the SKFF block fuses information across multi-resolution branches, we also need a mechanism to share information within a feature tensor, both along the spatial and the channel dimensions which is done by the DAU block. The DAU suppresses less useful features and only allows more informative ones to pass further. This feature recalibration is achieved by using Channel Attention and Spatial Attention mechanisms.
The Channel Attention branch exploits the inter-channel relationships of the convolutional feature maps by applying squeeze and excitation operations. Given a feature map, the squeeze operation applies Global Average Pooling across spatial dimensions to encode global context, thus yielding a feature descriptor. The excitation operator passes this feature descriptor through two convolutional layers followed by the sigmoid gating and generates activations. Finally, the output of Channel Attention branch is obtained by rescaling the input feature map with the output activations.
The Spatial Attention branch is designed to exploit the inter-spatial dependencies of convolutional features. The goal of Spatial Attention is to generate a spatial attention map and use it to recalibrate the incoming features. To generate the spatial attention map, the Spatial Attention branch first independently applies Global Average Pooling and Max Pooling operations on input features along the channel dimensions and concatenates the outputs to form a resultant feature map which is then passed through a convolution and sigmoid activation to obtain the spatial attention map. This spatial attention map is then used to rescale the input feature map.
def spatial_attention_block(input_tensor):
average_pooling = tf.reduce_max(input_tensor, axis=-1)
average_pooling = tf.expand_dims(average_pooling, axis=-1)
max_pooling = tf.reduce_mean(input_tensor, axis=-1)
max_pooling = tf.expand_dims(max_pooling, axis=-1)
concatenated = layers.Concatenate(axis=-1)([average_pooling, max_pooling])
feature_map = layers.Conv2D(1, kernel_size=(1, 1))(concatenated)
feature_map = tf.nn.sigmoid(feature_map)
return input_tensor * feature_map
def channel_attention_block(input_tensor):
channels = list(input_tensor.shape)[-1]
average_pooling = layers.GlobalAveragePooling2D()(input_tensor)
feature_descriptor = tf.reshape(average_pooling, shape=(-1, 1, 1, channels))
feature_activations = layers.Conv2D(
filters=channels // 8, kernel_size=(1, 1), activation="relu"
)(feature_descriptor)
feature_activations = layers.Conv2D(
filters=channels, kernel_size=(1, 1), activation="sigmoid"
)(feature_activations)
return input_tensor * feature_activations
def dual_attention_unit_block(input_tensor):
channels = list(input_tensor.shape)[-1]
feature_map = layers.Conv2D(
channels, kernel_size=(3, 3), padding="same", activation="relu"
)(input_tensor)
feature_map = layers.Conv2D(channels, kernel_size=(3, 3), padding="same")(
feature_map
)
channel_attention = channel_attention_block(feature_map)
spatial_attention = spatial_attention_block(feature_map)
concatenation = layers.Concatenate(axis=-1)([channel_attention, spatial_attention])
concatenation = layers.Conv2D(channels, kernel_size=(1, 1))(concatenation)
return layers.Add()([input_tensor, concatenation])
Multi-Scale Residual Block
The Multi-Scale Residual Block is capable of generating a spatially-precise output by maintaining high-resolution representations, while receiving rich contextual information from low-resolutions. The MRB consists of multiple (three in this paper) fully-convolutional streams connected in parallel. It allows information exchange across parallel streams in order to consolidate the high-resolution features with the help of low-resolution features, and vice versa. The MIRNet employs a recursive residual design (with skip connections) to ease the flow of information during the learning process. In order to maintain the residual nature of our architecture, residual resizing modules are used to perform downsampling and upsampling operations that are used in the Multi-scale Residual Block.
# Recursive Residual Modules
def down_sampling_module(input_tensor):
channels = list(input_tensor.shape)[-1]
main_branch = layers.Conv2D(channels, kernel_size=(1, 1), activation="relu")(
input_tensor
)
main_branch = layers.Conv2D(
channels, kernel_size=(3, 3), padding="same", activation="relu"
)(main_branch)
main_branch = layers.MaxPooling2D()(main_branch)
main_branch = layers.Conv2D(channels * 2, kernel_size=(1, 1))(main_branch)
skip_branch = layers.MaxPooling2D()(input_tensor)
skip_branch = layers.Conv2D(channels * 2, kernel_size=(1, 1))(skip_branch)
return layers.Add()([skip_branch, main_branch])
def up_sampling_module(input_tensor):
channels = list(input_tensor.shape)[-1]
main_branch = layers.Conv2D(channels, kernel_size=(1, 1), activation="relu")(
input_tensor
)
main_branch = layers.Conv2D(
channels, kernel_size=(3, 3), padding="same", activation="relu"
)(main_branch)
main_branch = layers.UpSampling2D()(main_branch)
main_branch = layers.Conv2D(channels // 2, kernel_size=(1, 1))(main_branch)
skip_branch = layers.UpSampling2D()(input_tensor)
skip_branch = layers.Conv2D(channels // 2, kernel_size=(1, 1))(skip_branch)
return layers.Add()([skip_branch, main_branch])
# MRB Block
def multi_scale_residual_block(input_tensor, channels):
# features
level1 = input_tensor
level2 = down_sampling_module(input_tensor)
level3 = down_sampling_module(level2)
# DAU
level1_dau = dual_attention_unit_block(level1)
level2_dau = dual_attention_unit_block(level2)
level3_dau = dual_attention_unit_block(level3)
# SKFF
level1_skff = selective_kernel_feature_fusion(
level1_dau,
up_sampling_module(level2_dau),
up_sampling_module(up_sampling_module(level3_dau)),
)
level2_skff = selective_kernel_feature_fusion(
down_sampling_module(level1_dau), level2_dau, up_sampling_module(level3_dau)
)
level3_skff = selective_kernel_feature_fusion(
down_sampling_module(down_sampling_module(level1_dau)),
down_sampling_module(level2_dau),
level3_dau,
)
# DAU 2
level1_dau_2 = dual_attention_unit_block(level1_skff)
level2_dau_2 = up_sampling_module((dual_attention_unit_block(level2_skff)))
level3_dau_2 = up_sampling_module(
up_sampling_module(dual_attention_unit_block(level3_skff))
)
# SKFF 2
skff_ = selective_kernel_feature_fusion(level1_dau_2, level3_dau_2, level3_dau_2)
conv = layers.Conv2D(channels, kernel_size=(3, 3), padding="same")(skff_)
return layers.Add()([input_tensor, conv])
MIRNet Model
def recursive_residual_group(input_tensor, num_mrb, channels):
conv1 = layers.Conv2D(channels, kernel_size=(3, 3), padding="same")(input_tensor)
for _ in range(num_mrb):
conv1 = multi_scale_residual_block(conv1, channels)
conv2 = layers.Conv2D(channels, kernel_size=(3, 3), padding="same")(conv1)
return layers.Add()([conv2, input_tensor])
def mirnet_model(num_rrg, num_mrb, channels):
input_tensor = keras.Input(shape=[None, None, 3])
x1 = layers.Conv2D(channels, kernel_size=(3, 3), padding="same")(input_tensor)
for _ in range(num_rrg):
x1 = recursive_residual_group(x1, num_mrb, channels)
conv = layers.Conv2D(3, kernel_size=(3, 3), padding="same")(x1)
output_tensor = layers.Add()([input_tensor, conv])
return keras.Model(input_tensor, output_tensor)
model = mirnet_model(num_rrg=3, num_mrb=2, channels=64)
Training
- We train MIRNet using Charbonnier Loss as the loss function and Adam Optimizer with a learning rate of
1e-4 .
- We use Peak Signal Noise Ratio or PSNR as a metric which is an expression for the ratio between the maximum possible value (power) of a signal and the power of distorting noise that affects the quality of its representation.
def charbonnier_loss(y_true, y_pred):
return tf.reduce_mean(tf.sqrt(tf.square(y_true - y_pred) + tf.square(1e-3)))
def peak_signal_noise_ratio(y_true, y_pred):
return tf.image.psnr(y_pred, y_true, max_val=255.0)
optimizer = keras.optimizers.Adam(learning_rate=1e-4)
model.compile(
optimizer=optimizer, loss=charbonnier_loss, metrics=[peak_signal_noise_ratio]
)
history = model.fit(
train_dataset,
validation_data=val_dataset,
epochs=50,
callbacks=[
keras.callbacks.ReduceLROnPlateau(
monitor="val_peak_signal_noise_ratio",
factor=0.5,
patience=5,
verbose=1,
min_delta=1e-7,
mode="max",
)
],
)
plt.plot(history.history["loss"], label="train_loss")
plt.plot(history.history["val_loss"], label="val_loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.title("Train and Validation Losses Over Epochs", fontsize=14)
plt.legend()
plt.grid()
plt.show()
plt.plot(history.history["peak_signal_noise_ratio"], label="train_psnr")
plt.plot(history.history["val_peak_signal_noise_ratio"], label="val_psnr")
plt.xlabel("Epochs")
plt.ylabel("PSNR")
plt.title("Train and Validation PSNR Over Epochs", fontsize=14)
plt.legend()
plt.grid()
plt.show()
Epoch 1/50
75/75 [==============================] - 109s 731ms/step - loss: 0.2125 - peak_signal_noise_ratio: 62.0458 - val_loss: 0.1592 - val_peak_signal_noise_ratio: 64.1833
Epoch 2/50
75/75 [==============================] - 49s 651ms/step - loss: 0.1764 - peak_signal_noise_ratio: 63.1356 - val_loss: 0.1257 - val_peak_signal_noise_ratio: 65.6498
Epoch 3/50
75/75 [==============================] - 49s 652ms/step - loss: 0.1724 - peak_signal_noise_ratio: 63.3172 - val_loss: 0.1245 - val_peak_signal_noise_ratio: 65.6902
Epoch 4/50
75/75 [==============================] - 49s 653ms/step - loss: 0.1670 - peak_signal_noise_ratio: 63.4917 - val_loss: 0.1206 - val_peak_signal_noise_ratio: 65.8893
Epoch 5/50
75/75 [==============================] - 49s 653ms/step - loss: 0.1651 - peak_signal_noise_ratio: 63.6555 - val_loss: 0.1333 - val_peak_signal_noise_ratio: 65.6338
Epoch 6/50
75/75 [==============================] - 49s 654ms/step - loss: 0.1572 - peak_signal_noise_ratio: 64.1984 - val_loss: 0.1142 - val_peak_signal_noise_ratio: 66.7711
Epoch 7/50
75/75 [==============================] - 49s 654ms/step - loss: 0.1592 - peak_signal_noise_ratio: 64.0062 - val_loss: 0.1205 - val_peak_signal_noise_ratio: 66.1075
Epoch 8/50
75/75 [==============================] - 49s 654ms/step - loss: 0.1493 - peak_signal_noise_ratio: 64.4675 - val_loss: 0.1170 - val_peak_signal_noise_ratio: 66.1355
Epoch 9/50
75/75 [==============================] - 49s 654ms/step - loss: 0.1446 - peak_signal_noise_ratio: 64.7416 - val_loss: 0.1301 - val_peak_signal_noise_ratio: 66.0207
Epoch 10/50
75/75 [==============================] - 49s 655ms/step - loss: 0.1539 - peak_signal_noise_ratio: 64.3999 - val_loss: 0.1220 - val_peak_signal_noise_ratio: 66.7203
Epoch 11/50
75/75 [==============================] - 49s 654ms/step - loss: 0.1451 - peak_signal_noise_ratio: 64.7352 - val_loss: 0.1219 - val_peak_signal_noise_ratio: 66.3140
Epoch 00011: ReduceLROnPlateau reducing learning rate to 4.999999873689376e-05.
Epoch 12/50
75/75 [==============================] - 49s 651ms/step - loss: 0.1492 - peak_signal_noise_ratio: 64.7238 - val_loss: 0.1204 - val_peak_signal_noise_ratio: 66.4726
Epoch 13/50
75/75 [==============================] - 49s 651ms/step - loss: 0.1456 - peak_signal_noise_ratio: 64.9666 - val_loss: 0.1109 - val_peak_signal_noise_ratio: 67.1270
Epoch 14/50
75/75 [==============================] - 49s 651ms/step - loss: 0.1372 - peak_signal_noise_ratio: 65.3932 - val_loss: 0.1150 - val_peak_signal_noise_ratio: 66.9255
Epoch 15/50
75/75 [==============================] - 49s 650ms/step - loss: 0.1340 - peak_signal_noise_ratio: 65.5611 - val_loss: 0.1111 - val_peak_signal_noise_ratio: 67.2009
Epoch 16/50
75/75 [==============================] - 49s 651ms/step - loss: 0.1377 - peak_signal_noise_ratio: 65.3355 - val_loss: 0.1140 - val_peak_signal_noise_ratio: 67.0495
Epoch 17/50
75/75 [==============================] - 49s 651ms/step - loss: 0.1340 - peak_signal_noise_ratio: 65.6484 - val_loss: 0.1132 - val_peak_signal_noise_ratio: 67.0257
Epoch 18/50
75/75 [==============================] - 49s 651ms/step - loss: 0.1360 - peak_signal_noise_ratio: 65.4871 - val_loss: 0.1070 - val_peak_signal_noise_ratio: 67.4185
Epoch 19/50
75/75 [==============================] - 49s 649ms/step - loss: 0.1349 - peak_signal_noise_ratio: 65.4856 - val_loss: 0.1112 - val_peak_signal_noise_ratio: 67.2248
Epoch 20/50
75/75 [==============================] - 49s 651ms/step - loss: 0.1273 - peak_signal_noise_ratio: 66.0817 - val_loss: 0.1185 - val_peak_signal_noise_ratio: 67.0208
Epoch 21/50
75/75 [==============================] - 49s 656ms/step - loss: 0.1393 - peak_signal_noise_ratio: 65.3710 - val_loss: 0.1102 - val_peak_signal_noise_ratio: 67.0362
Epoch 22/50
75/75 [==============================] - 49s 653ms/step - loss: 0.1326 - peak_signal_noise_ratio: 65.8781 - val_loss: 0.1059 - val_peak_signal_noise_ratio: 67.4949
Epoch 23/50
75/75 [==============================] - 49s 653ms/step - loss: 0.1260 - peak_signal_noise_ratio: 66.1770 - val_loss: 0.1187 - val_peak_signal_noise_ratio: 66.6312
Epoch 24/50
75/75 [==============================] - 49s 650ms/step - loss: 0.1331 - peak_signal_noise_ratio: 65.8160 - val_loss: 0.1075 - val_peak_signal_noise_ratio: 67.2668
Epoch 25/50
75/75 [==============================] - 49s 654ms/step - loss: 0.1288 - peak_signal_noise_ratio: 66.0734 - val_loss: 0.1027 - val_peak_signal_noise_ratio: 67.9508
Epoch 26/50
75/75 [==============================] - 49s 654ms/step - loss: 0.1306 - peak_signal_noise_ratio: 66.0349 - val_loss: 0.1076 - val_peak_signal_noise_ratio: 67.3821
Epoch 27/50
75/75 [==============================] - 49s 655ms/step - loss: 0.1356 - peak_signal_noise_ratio: 65.7978 - val_loss: 0.1079 - val_peak_signal_noise_ratio: 67.4785
Epoch 28/50
75/75 [==============================] - 49s 655ms/step - loss: 0.1270 - peak_signal_noise_ratio: 66.2681 - val_loss: 0.1116 - val_peak_signal_noise_ratio: 67.3327
Epoch 29/50
75/75 [==============================] - 49s 654ms/step - loss: 0.1297 - peak_signal_noise_ratio: 66.0506 - val_loss: 0.1057 - val_peak_signal_noise_ratio: 67.5432
Epoch 30/50
75/75 [==============================] - 49s 654ms/step - loss: 0.1275 - peak_signal_noise_ratio: 66.3542 - val_loss: 0.1034 - val_peak_signal_noise_ratio: 67.4624
Epoch 00030: ReduceLROnPlateau reducing learning rate to 2.499999936844688e-05.
Epoch 31/50
75/75 [==============================] - 49s 654ms/step - loss: 0.1258 - peak_signal_noise_ratio: 66.2724 - val_loss: 0.1066 - val_peak_signal_noise_ratio: 67.5729
Epoch 32/50
75/75 [==============================] - 49s 653ms/step - loss: 0.1153 - peak_signal_noise_ratio: 67.0384 - val_loss: 0.1064 - val_peak_signal_noise_ratio: 67.4336
Epoch 33/50
75/75 [==============================] - 49s 653ms/step - loss: 0.1189 - peak_signal_noise_ratio: 66.7662 - val_loss: 0.1062 - val_peak_signal_noise_ratio: 67.5128
Epoch 34/50
75/75 [==============================] - 49s 654ms/step - loss: 0.1159 - peak_signal_noise_ratio: 66.9257 - val_loss: 0.1003 - val_peak_signal_noise_ratio: 67.8672
Epoch 35/50
75/75 [==============================] - 49s 653ms/step - loss: 0.1191 - peak_signal_noise_ratio: 66.7690 - val_loss: 0.1043 - val_peak_signal_noise_ratio: 67.4840
Epoch 00035: ReduceLROnPlateau reducing learning rate to 1.249999968422344e-05.
Epoch 36/50
75/75 [==============================] - 49s 651ms/step - loss: 0.1158 - peak_signal_noise_ratio: 67.0264 - val_loss: 0.1057 - val_peak_signal_noise_ratio: 67.6526
Epoch 37/50
75/75 [==============================] - 49s 652ms/step - loss: 0.1128 - peak_signal_noise_ratio: 67.1950 - val_loss: 0.1104 - val_peak_signal_noise_ratio: 67.1770
Epoch 38/50
75/75 [==============================] - 49s 652ms/step - loss: 0.1200 - peak_signal_noise_ratio: 66.7623 - val_loss: 0.1048 - val_peak_signal_noise_ratio: 67.7003
Epoch 39/50
75/75 [==============================] - 49s 651ms/step - loss: 0.1112 - peak_signal_noise_ratio: 67.3895 - val_loss: 0.1031 - val_peak_signal_noise_ratio: 67.6530
Epoch 40/50
75/75 [==============================] - 49s 650ms/step - loss: 0.1125 - peak_signal_noise_ratio: 67.1694 - val_loss: 0.1034 - val_peak_signal_noise_ratio: 67.6437
Epoch 00040: ReduceLROnPlateau reducing learning rate to 6.24999984211172e-06.
Epoch 41/50
75/75 [==============================] - 49s 650ms/step - loss: 0.1131 - peak_signal_noise_ratio: 67.2471 - val_loss: 0.1152 - val_peak_signal_noise_ratio: 66.8625
Epoch 42/50
75/75 [==============================] - 49s 650ms/step - loss: 0.1069 - peak_signal_noise_ratio: 67.5794 - val_loss: 0.1119 - val_peak_signal_noise_ratio: 67.1944
Epoch 43/50
75/75 [==============================] - 49s 651ms/step - loss: 0.1118 - peak_signal_noise_ratio: 67.2779 - val_loss: 0.1147 - val_peak_signal_noise_ratio: 66.9731
Epoch 44/50
75/75 [==============================] - 48s 647ms/step - loss: 0.1101 - peak_signal_noise_ratio: 67.2777 - val_loss: 0.1107 - val_peak_signal_noise_ratio: 67.2580
Epoch 45/50
75/75 [==============================] - 49s 649ms/step - loss: 0.1076 - peak_signal_noise_ratio: 67.6359 - val_loss: 0.1103 - val_peak_signal_noise_ratio: 67.2720
Epoch 00045: ReduceLROnPlateau reducing learning rate to 3.12499992105586e-06.
Epoch 46/50
75/75 [==============================] - 49s 648ms/step - loss: 0.1066 - peak_signal_noise_ratio: 67.4869 - val_loss: 0.1077 - val_peak_signal_noise_ratio: 67.4986
Epoch 47/50
75/75 [==============================] - 49s 649ms/step - loss: 0.1072 - peak_signal_noise_ratio: 67.4890 - val_loss: 0.1140 - val_peak_signal_noise_ratio: 67.1755
Epoch 48/50
75/75 [==============================] - 49s 649ms/step - loss: 0.1065 - peak_signal_noise_ratio: 67.6796 - val_loss: 0.1091 - val_peak_signal_noise_ratio: 67.3442
Epoch 49/50
75/75 [==============================] - 49s 648ms/step - loss: 0.1098 - peak_signal_noise_ratio: 67.3909 - val_loss: 0.1082 - val_peak_signal_noise_ratio: 67.4616
Epoch 50/50
75/75 [==============================] - 49s 648ms/step - loss: 0.1090 - peak_signal_noise_ratio: 67.5139 - val_loss: 0.1124 - val_peak_signal_noise_ratio: 67.1488
Epoch 00050: ReduceLROnPlateau reducing learning rate to 1.56249996052793e-06.
Inference
def plot_results(images, titles, figure_size=(12, 12)):
fig = plt.figure(figsize=figure_size)
for i in range(len(images)):
fig.add_subplot(1, len(images), i + 1).set_title(titles[i])
_ = plt.imshow(images[i])
plt.axis("off")
plt.show()
def infer(original_image):
image = keras.preprocessing.image.img_to_array(original_image)
image = image.astype("float32") / 255.0
image = np.expand_dims(image, axis=0)
output = model.predict(image)
output_image = output[0] * 255.0
output_image = output_image.clip(0, 255)
output_image = output_image.reshape(
(np.shape(output_image)[0], np.shape(output_image)[1], 3)
)
output_image = Image.fromarray(np.uint8(output_image))
original_image = Image.fromarray(np.uint8(original_image))
return output_image
Inference on Test Images
We compare the test images from LOLDataset enhanced by MIRNet with images enhanced via the PIL.ImageOps.autocontrast() function.
for low_light_image in random.sample(test_low_light_images, 6):
original_image = Image.open(low_light_image)
enhanced_image = infer(original_image)
plot_results(
[original_image, ImageOps.autocontrast(original_image), enhanced_image],
["Original", "PIL Autocontrast", "MIRNet Enhanced"],
(20, 12),
)
腾讯图像超分辨率算法RealSR,开源代码 MIRNet:学习丰富的特征以进行真实图像修复和增强 |