您当前的位置:首页 > IT编程 > 图像修复
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程: ACE算法--图像增强技术及实现代码

51自学网 2020-06-07 11:00:36
  图像修复
这篇教程 ACE算法--图像增强技术及实现代码写得很实用,希望能帮到您。

    ACE算法源自retinex算法,可以调整图像的对比度,实现人眼色彩恒常性和亮度恒常性,通过差分来计算目标点与周围像素点的相对明暗关系来校正最终像素值,有很好的增强效果。但是计算复杂度非常高,本文提出一种有效的快速实现方法。

    为叙述方便,这里假设后面的图像都是归一化到[0,1]之间的浮点数图像。

    ACE算法的计算公式为:

Y =   ∑(g(I(x0)-I(x))w(x0,x))  / ∑(w(x0,x))                                    x属于I                                (1)

其中,w是权重参数,离中心点像素越远w值越小,可以直接取值欧氏距离的倒数。g()是相对对比度调节参数,非线性的,简单取如下计算方法:

g(x) = max(min(ax, 1.0), -1.0)                                                                                        (2)

这里a是控制参数,值越大,细节增强越明显。计算完后,还要对Y进行一次归一化即可得到最终的增强图像。

    ACE的增强效果普遍与retinex好。需要注意的是,ACE中当前像素是与整个图像的其他像素做差分比较,计算复杂度非常非常高,这也是限制它应用的最主要原因,本文主要基于两个假设:(1)对一副图像ACE增强后得到输出Y,如果对Y再进行一次ACE增强,输出仍然是Y本身;(2)对一副图像的ACE增强结果进行尺寸缩放得到Y,对Y进行ACE增强,输出仍然是Y本身。这两个假设我没法证实,呵呵,就算臆想的吧。

    如果上面假设成立,我们就可以对图像进行缩放得到I1,对I1的ACE增强结果进行尺度放大(与I尺寸一样)得到Y1,那么Y和Y1是非常接近的,我们只需要在Y1基础上进一步处理即可。这里就又引申了两个细节问题:1)如何快速的求I1的ACE增强结果? 其实很简单,对它再次缩放得到I2,求I2的增强结果,依次类推,就是金字塔结构思想。2)如何在Y1基础上进一步处理得到Y? 因为是在整个图像域进行差分比较运算,与近处邻域像素的比较构成了Y的细节信息,与远处像素的比较构成了Y的全局背景信息,那么我们合理假设,Y和Y1的全局背景信息相同,只更新细节信息即可,也就是,我们需要在Y1基础上加上I中邻近像素的差分结果,并减去Y1中邻近像素的差分结果就是最终的输出Y。

    上面说的有点绕,慢慢看吧。

    下面是python代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import cv2
import numpy as np
import math
 
def stretchImage(data, s=0.005, bins = 2000):    #线性拉伸,去掉最大最小0.5%的像素值,然后线性拉伸至[0,1]
    ht = np.histogram(data, bins);
    d = np.cumsum(ht[0])/float(data.size)
    lmin = 0; lmax=bins-1
    while lmin<bins:
        if d[lmin]>=s:
            break
        lmin+=1
    while lmax>=0:
        if d[lmax]<=1-s:
            break
        lmax-=1
    return np.clip((data-ht[1][lmin])/(ht[1][lmax]-ht[1][lmin]), 0,1)
 
g_para = {}
def getPara(radius = 5):                        #根据半径计算权重参数矩阵
    global g_para
    m = g_para.get(radius, None)
    if m is not None:
        return m
    size = radius*2+1
    m = np.zeros((size, size))
    for h in range(-radius, radius+1):
        for w in range(-radius, radius+1):
            if h==0 and w==0:
                continue
            m[radius+h, radius+w] = 1.0/math.sqrt(h**2+w**2)
    m /= m.sum()
    g_para[radius] = m
    return m
 
def zmIce(I, ratio=4, radius=300):                     #常规的ACE实现
    para = getPara(radius)
    height,width = I.shape
    zh,zw = [0]*radius + range(height) + [height-1]*radius, [0]*radius + range(width)  + [width -1]*radius
    Z = I[np.ix_(zh, zw)]
    res = np.zeros(I.shape)
    for h in range(radius*2+1):
        for w in range(radius*2+1):
            if para[h][w] == 0:
                continue
            res += (para[h][w] * np.clip((I-Z[h:h+height, w:w+width])*ratio, -1, 1))
    return res
 
def zmIceFast(I, ratio, radius):                #单通道ACE快速增强实现
    height, width = I.shape[:2]
    if min(height, width) <=2:
        return np.zeros(I.shape)+0.5
    Rs = cv2.resize(I, ((width+1)/2, (height+1)/2))
    Rf = zmIceFast(Rs, ratio, radius)             #递归调用
    Rf = cv2.resize(Rf, (width, height))
    Rs = cv2.resize(Rs, (width, height))
 
    return Rf+zmIce(I,ratio, radius)-zmIce(Rs,ratio,radius)   
             
def zmIceColor(I, ratio=4, radius=3):               #rgb三通道分别增强,ratio是对比度增强因子,radius是卷积模板半径
    res = np.zeros(I.shape)
    for k in range(3):
        res[:,:,k] = stretchImage(zmIceFast(I[:,:,k], ratio, radius))
    return res
 
if __name__ == '__main__':
    m = zmIceColor(cv2.imread('p4.bmp')/255.0)*255
    cv2.imwrite('zmIce.jpg', m)

黑白照片自动着色的神经网络-Alpha版
将PyTorch中可用的预训练模型下载到特定路径?
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。