通过反思实践来改进教学,做‘反思型实践者’”。八年级数学角平分线的性质的教学反思有哪些呢?接下来是51自学小编为大家带来的关于八年级数学角平分线的性质教学反思,希望会给大家带来帮助。 八年级数学角平分线的性质教学反思(一) 本节课采用“创设情境—自主探究—合作交流—反馈测试”等流程。 一、重视情境创设,让学生经历求知过程。本节课引入问题教学的模式,其目的是引导学生积极参与课堂,积极投入到解题思路的探索过程中,通过合作学习引导学生深层次参与。 二、有效利用多媒体辅助教学,增加课堂教学效益。在学生通过动手实践、猜想、概括等活动后,用几何画板演示角平分线上的点运动时,该点到角两边的距离的变化情况,进一步体会变化中的规律并快速反馈出相应的结论,为下一步的命题的归纳与概括、证明奠定基础。课件的动态演示,对抽象思维能力偏弱的学生有了更好的帮助,有效促进学生从直觉思维到抽象思维的过渡。 三、注重对学生数学课堂学习过程的评价,尽可能做到充分理解和尊重学生的发言。对正确的发言给予真诚的肯定,对不对的意见有意进行冷处理,创造机会让学生去争论。学生能够在课堂上敢说、敢议、敢评。不足是有时过于急躁,应把更多的时间留给学生,让学生在课堂上有更多的时间去思考。 八年级数学角平分线的性质教学反思(二) 本节课的教学目标是了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明。为了让学生掌握角的平分线的性质定理的运用,对定理的学习进行以下设计:用数学语言给出条件和结论,让学生熟悉这定理的条件和结论后,再拿一些具体题目让学生在情境当中运用这两个定理。用数学语言叙述角平分线的性质定理。条件:点P是角AOB平分线上的一点,PD垂直OA,PE垂直OB。结论:PD=PE。三个条件缺一不可,具体题目设计,第50页第1、2,题,第51页第2、3题。让学生看到题目后指出怎样用定理。 一、成功之处 1、通过具体情境使学生能够比较容易的运用定理。许多学生学习了定理后,遇到相对应的题目往往不知道该怎样用定理,通过一些对应的题目,或者用数学语言给出条件,让学生得出结论,并说出应用的定理,可以强化学生对定理的运用能力。 2、注重分析思路,学生学会思考问题,注重书写格式,让学生学会清楚的表达思考的过程。在证明的选题上,注意了减缓坡度,循序渐进。在开始阶段,证明方向明确,过程简单,书写容易规范化,这一阶段要求学生体会例题的证明思路及格式,然后再逐步增加题目的复杂程度,小步前进,每一步都为下一步做准备,下一步又注意复习前一步训练的内容。通过精心角平分线的证明问题,减缓学生几何证明的坡度。 二、不足之处 1、学生缺乏具体的自主探究几何的机会,只是培养了学生的几何证明思路。 2、没有理论结合实际生活。教材第49页思考通过确定集贸市场的位置的问题引出“到角平分线的两边距离相等的点在角的平分线上”的结论,使学生看到理论来自实际需要。但是教学上并没有体现。 3、还用部分同学不用性质定理,仍然通过全等来证明。 八年级数学角平分线的性质教学反思(三) 周五教学了角平分线的性质,课本上安排的知识要求比较多:有角平分线的尺规作图、过直线上的点作已知直线的垂线、角平分线的性质定理及其应用。有学生的前置学习,这几部分的内容在课上比较好的得到了实现,这是“协进课堂”优势的地方。但是,本课回想起来还是比较平淡,最强烈的感受:利用角平分线的性质定理可以优化我们的证题思路、角平分线性质定理的基本图形可以提醒学生证题思路的确定,学生没有真真切切的体验。这就使我们思考,如何在“协进课堂”模式下使学生对新知识的产生和新知识的应用有更为深刻的体验。 教学时,教者要善于把握和创设机会,对本课教学,例题1的教学就是一个实例,题目是:△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别是E、F,求证:EB=FC。在第一个班教学时,分析题目,探求方法时学生比较顺利地使用了角平分线的性质定理,而在另一个班教学时,从学案的检查中我发现了王钰钰同学用了两个方法,而且还进行了比较,及时让她展示,并谈做这道题的体会,学生对新知识的应用意识得到了强化。在练习题中,有几个地方可以有方法优劣的比较体验。提升学习训练对补全角平分线性质定理基本图形,作出合理的辅助线,教者在教学这道题时,要引导学生总结,本课时间很紧,总结还略显仓促。 看了八年级数学角平分线的性质教学反思看过:
1.数学角平分线教学反思 角平分线教学反思 2.角平分线教学反思 角平分线的教师教学反思 3.八年级数学上册角平分线的性质精选练习题 4.人教版八年级数学角平分线的性质精选练习题
|