函数的值域及其求法是近几年高三数学考察的重点内容之一,下面是51自学小编给大家带来的高三数学函数难点解析,希望对你有帮助。 2017高三数学函数难点解析 ●难点 (★★★★★)设m是实数,记M={m|m>1},f(x)=log3(x2-4mx+4m2+m+ ). (1)证明:当m∈M时,f(x)对所有实数都有意义;反之,若f(x)对所有实数x都有意义,则m∈M. (2)当m∈M时,求函数f(x)的最小值. (3)求证:对每个m∈M,函数f(x)的最小值都不小于1. 函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样.本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象. ●难点 (★★★★)设a>0,f(x)= 是R上的偶函数,(1)求a的值;(2)证明: f(x)在(0,+∞)上是增函数. 函数的单调性、奇偶性是高考的重点和热点内容之一,特别是两性质的应用更加突出.本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识. ●难点 (★★★★★)已知偶函数f(x)在(0,+∞)上为增函数,且f(2)=0,解不等式f[log2(x2+5x+4)]≥0. ●案例探究 [例1]已知奇函数f(x)是定义在(-3,3)上的减函数,且满足不等式f(x-3)+f(x2-3)<0,设不等式解集为A,B=A∪{x|1≤x≤ },求函数g(x)=-3x2+3x-4(x∈B)的最大值. 指数函数、对数函数是高考考查的重点内容之一,本节主要帮助考生掌握两种函数的概念、图象和性质并会用它们去解决某些简单的实际问题. ●难点转 (★★★★★)设f(x)=log2 ,F(x)= +f(x). (1)试判断函数f(x)的单调性,并用函数单调性定义,给出证明; (2)若f(x)的反函数为f-1(x),证明:对任意的自然数n(n≥3),都有f-1(n)> ; (3)若F(x)的反函数F-1(x),证明:方程F-1(x)=0有惟一解. 函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用.因此,考生要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质. ●难点 (★★★★★)已知函数f(x)=ax3+bx2+cx+d的图象如图,求b的范围. 函数综合问题是历年高考的热点和重点内容之一,一般难度较大,考查内容和形式灵活多样.本节课主要帮助考生在掌握有关函数知识的基础上进一步深化综合运用知识的能力,掌握基本解题技巧和方法,并培养考生的思维和创新能力. ●难点 (★★★★★)设函数f(x)的定义域为R,对任意实数x、y都有f(x+y)=f(x)+f(y),当x>0时f(x)<0且f(3)=-4. (1)求证:f(x)为奇函数; (2)在区间[-9,9]上,求f(x)的最值. 高三数学函数难点解析相关文章: 1.高三数学函数例题及解析 2.高一数学集合和函数的难点 3.高三数学函数知识点梳理 4.高三数学函数专题训练题及答案 5.函数中存在性和任意性问题分类解析 6.高考理科数学函数知识点 7.高三数学函数的单调性及最值知识点总结
|