您当前的位置:首页 > IT编程 > python
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Python retrying 重试机制的使用方法

51自学网 2021-10-30 22:14:34
  python
这篇教程Python retrying 重试机制的使用方法写得很实用,希望能帮到您。

我们在程序开发中,经常会需要请求一些外部的接口资源,而且我们不能保证每次请求一定会成功,所以这些涉及到网络请求的代码片段就需要加上重试机制。下面来说一下Python中的重试方法。

循环加判断

最简单的重试方式就是在需要进行重试的代码片段上加一个循环,程序内捕获异常,如果执行成功就退出循环,执行失败就就重复执行相关代码,例如:

import requestsdef req_with_retry(url):    retry_max = 10  # 最大重试次数为10次    for i in range(1, retry_max+1):        try:            print("第{}次请求".format(i))            # 这里请求不到会抛ConnectTimeout异常            res = requests.get(url, timeout=1)            data = res.json()            print("请求成功:", data)            break        except requests.exceptions.ConnectTimeout as e:            continue# 请求一个不存在的网址req_with_retry(https://www.hahaha.cn/haha)

执行结果:

由于请求了一个不存在的网址,所以一直在重试,知道达到最大次数10次。但是这样有一定的代码侵入性,在业务逻辑上加入循环判断显得很不美观,别着急,往下看,还有更好的方法。

retrying

retrying是Python的一个第三方库,它提供一个装饰器函数retry,被装饰的业务函数就会在运行失败的条件下重新执行,默认只要报错就会一直重试,直至执行成功。

可以使用pip install retrying进行安装。

例如下面一段代码,我们使用生成随机数的大小的方式模拟业务的成功与失败,只要是生成的随机数大于2,都视为失败,就会重试,直到生成的随机数小于2:

import randomfrom retrying import retry@retrydef random_with_retry():    if random.randint(0, 10) > 2:        print("大于2,重试...")        raise Exception("大于2")    print("小于2,成功!")random_with_retry()

运行结果如下:

retry还可以接受一些参数,下面是源码中Retrying类的初始化函数中可选的参数:

  • stop_max_attempt_number:最大重试次数,超过该次数就停止重试
  • stop_max_delay:最大延迟时间(执行这个方法重试的总时间),超过该时间就停止
  • wait_fixed:两次retrying之间的等待时间
  • wait_random_min和wait_random_max:用随机的方式产生两次retrying之间的等待时间
  • wait_incrementing_start和wait_incrementing_increment:每调用一次增加固定时长
  • wait_exponential_multiplier和wait_exponential_max:以指数的形式产生两次retrying之间的等待时间,产生的值为2^previous_attempt_number * wait_exponential_multiplier,previous_attempt_number是前面已经retry的次数,如果产生的这个值超过了wait_exponential_max的大小,那么之后两个retrying之间的停留值都为wait_exponential_max。

特别需要注意的是retry_on_exception参数,它接收一个函数,用法如下:

# 判断异常def is_MyError(exception):    print("判断异常", exception)    print(isinstance(exception, (ValueError, IOError, ConnectionError)))    return isinstance(exception, (ValueError, IOError, ConnectionError))@retry(retry_on_exception=is_MyError)def random_with_retry():    """    随机一个0-10之前的整数,大于2抛异常,小于2成功    :return:    """    if random.randint(0, 10) > 2:        print("大于2,重试...")        raise ValueError("大于2")    print("小于2,成功!")random_with_retry()

这里retry_on_exception参数的大体思想是:接收一个自定义函数is_MyError,在is_MyError函数里判断了是不是属于ValueError, IOError, ConnectionError这三种异常;random_with_retry()函数如果抛出了异常,会去函数is_MyError()判断返回的是True还是False,如果是True则继续重试,如果是False则立即停止并抛出异常。

还有retry_on_result参数,也是接收一个函数,判断业务函数返回哪些结果时需要重试,思想和retry_on_exception参数类似。
我们可以根据自己的需要进行合理的搭配这些参数,达到我们想要的效果。

到此这篇关于Python retrying 重试机制的使用方法的文章就介绍到这了,更多相关Python retrying 重试机制内容请搜索51zixue.net以前的文章或继续浏览下面的相关文章希望大家以后多多支持51zixue.net! 


OpenCV半小时掌握基本操作之图像处理
OpenCV半小时掌握基本操作之图像裁剪融合
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。