您当前的位置:首页 > IT编程 > python
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:OpenCV-Python图像轮廓之轮廓特征详解

51自学网 2022-02-21 10:44:40
  python
这篇教程OpenCV-Python图像轮廓之轮廓特征详解写得很实用,希望能帮到您。

前言

图像轮廓是指由位于边缘、连续的、具有相同颜色和强度的点构成的曲线,它可以用于形状分析以及对象检测和识别。

一、轮廓的矩

轮廓的矩包含了轮廓的各种几何特征,如面积、位置、角度、形状等。cv2.moments()函数用于返回轮廓的矩,其基本格式如下:

ret = cv2.moments(array[, binaryImage])ret为返回的轮廓的矩,是一个字典对象, 大多数矩的含义比较抽象, 但其中的零阶矩(m00)表示轮廓的面积array为表示轮廓的数组binaryImage值为True时,会将array对象中的所有非0值设置为1
import cv2import numpy as npimport matplotlib.pyplot as pltimg = cv2.imread('shape2.jpg')cv2.imshow('original', img)img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)img1 = np.zeros(img.shape, np.uint8) + 255img1 = cv2.drawContours(img1, contours, -1,(0,255,0),2)cv2.imshow('Contours',img1)m0 = cv2.moments(contours[0])m1 = cv2.moments(contours[1])print('轮廓0的矩:', m0)print('轮廓1的矩:', m1)print('轮廓0的面积:', m0['m00'])print('轮廓1的面积:', m1['m00'])cv2.waitKey(0)cv2.destroyAllWindows()

在这里插入图片描述

在这里插入图片描述

二、轮廓的面积

cv2.contourArea()函数用于返回轮廓的面积,其基本格式如下:

ret = cv2.contourArea(contour[, oriented])ret为返回的面积contour为轮廓oriented为可选参数, 其参数值为True时, 返回值的正与负表示表示轮廓是顺时针还是逆时针, 参数值为False(默认值)时, 函数返回值为绝对值
img = cv2.imread('shape2.jpg')img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)m0 = cv2.contourArea(contours[0])m1 = cv2.contourArea(contours[1])print('轮廓0的面积:', m0)print('轮廓1的面积:', m1)

在这里插入图片描述

三、轮廓的长度

cv2.arcLength()函数用于返回轮廓的长度,其基本格式如下:

ret = cv2.cv2.arcLength(contour, closed)ret为返回的长度contour为轮廓closed为布尔值, 为True时表示轮廓是封闭的
img = cv2.imread('shape2.jpg')img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)m0 = cv2.arcLength(contours[0], True)m1 = cv2.arcLength(contours[1], True)print('轮廓0的长度:', m0)print('轮廓1的长度:', m1)

在这里插入图片描述

四、轮廓的近似多边形

cv2.approxPolyDP()函数用于返回轮廓的近似多边形,其基本格式如下:

ret = cv2.cv2.arcLength(contour, epsilon, closed)ret为返回的近似多边形contour为轮廓epsilon为精度, 表示近似多边形接近轮廓的最大距离closed为布尔值, 为True时表示轮廓是封闭的
img = cv2.imread('shape3.jpg')cv2.imshow('original', img)img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)img1 = np.zeros(img.shape, np.uint8) + 255img1 = cv2.drawContours(img1, contours, -1, (0,0,255), 2)cv2.imshow('Contours',img1)arcl = cv2.arcLength(contours[0], True)img2 = img1.copy()app = cv2.approxPolyDP(contours[0], arcl*0.05, True)img2 = cv2.drawContours(img2, [app], -1, (255,0,0), 2)cv2.imshow('contours',img2)cv2.waitKey(0)cv2.destroyAllWindows()

在这里插入图片描述

五、轮廓的凸包

cv2.convexHull()函数用于返回轮廓的凸包,其基本格式如下:

hull = cv2.convexHull(contours[, clockwise[, returnPointss]])hull为返回的凸包, 是一个numpy.ndarray对象, 包含了凸包的关键点contours为轮廓clockwise为方向标记, 为True时, 凸包为顺时针方向, 为False(默认值)时, 凸包为逆时针方向returnPointss为True时(默认值)时, 返回的hull中包含的是凸包关键点的坐标, 为False时, 返回的是凸包关键点在轮廓中的索引
img = cv2.imread('shape3.jpg')img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)img1 = np.zeros(img.shape, np.uint8) + 255img1 = cv2.drawContours(img1, contours, -1, (0,0,255), 2)cv2.imshow('Contours',img1)hull = cv2.convexHull(contours[0])print('returnPoints = Treu 时返回的凸包;/n',hull)hull2 = cv2.convexHull(contours[0], returnPoints=False)print('returnPoints = False时返回的凸包;/n',hull2)cv2.polylines(img1, [hull], True, (255,0,0),2)cv2.imshow('ConvecHull',img1)cv2.waitKey(0)cv2.destroyAllWindows()

在这里插入图片描述

在这里插入图片描述

六、轮廓的直边界矩形

轮廓的直边界矩形是指可容纳轮廓的矩形,且矩形的两条边必须是平行的,直边界矩形不一定是面积最小的边界矩形。

cv2.boundingRect()函数用于返回轮廓的直边界矩形,其基本格式如下:

ret = cv2.boundingRect(contours)ret为返回的直边界矩形, 它是一个四元组, 其格式为(矩形左上角x坐标, 矩形左上角y坐标, 矩形的宽度, 矩形的高度)contours为用于计算直边界矩形的轮廓
img = cv2.imread('shape4.jpg')cv2.imshow('original', img)img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)img1 = np.zeros(img.shape, np.uint8) + 255img1 = cv2.drawContours(img1, contours, -1, (0,0,255), 2)cv2.imshow('Contours',img1)ret = cv2.boundingRect(contours[0])print('直边界矩形:/n', ret)pt1 = (ret[0], ret[1])pt2 = (ret[0] + ret[2], ret[1] + ret[3])img2 = img1.copy()img2 = cv2.rectangle(img2, pt1, pt2, (255,0,0), 1)cv2.imshow('Rectangle', img2)cv2.waitKey(0)cv2.destroyAllWindows()

在这里插入图片描述

在这里插入图片描述

七、轮廓的旋转矩形

轮廓的旋转矩形是指可容纳轮廓的面积最小的矩形。

cv2.minAreaRect()函数用于返回轮廓的旋转矩形,其基本格式如下:

box = cv2.minAreaRect(contour)box为返回的旋转矩阵, 它是一个三元组, 其格式为((矩形中心点x坐标, 矩形中心点y坐标), (矩形的宽度, 矩形的高度), 矩形的旋转角度)contour为用于计算矩形的轮廓

cv2.minAreaRect()函数返回的结果不能直接用于绘制旋转矩形,可以使用cv2.boxPoints()函数将其转换为矩形的顶点坐标,其基本格式如下:

points = cv2.boxPoints(box)points为返回的矩形顶点坐标, 坐标数据为浮点数box为cv2.minAreaRect()函数返回的矩形数据
img = cv2.imread('shape4.jpg')cv2.imshow('original', img)img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)img1 = np.zeros(img.shape, np.uint8) + 255cv2.drawContours(img1, contours, -1, (0,0,255) ,2)cv2.imshow('Contours',img1)# 计算最小旋转矩形ret = cv2.minAreaRect(contours[0])rect = cv2.boxPoints(ret)rect = np.int0(rect)img2 = img1.copy()cv2.drawContours(img2, [rect], 0, (255,0,0), 2)cv2.imshow('Rectangle', img2)cv2.waitKey(0)cv2.destroyAllWindows()

在这里插入图片描述

八、轮廓的最小外包圆

cv2.minEnclosingCircle()函数用于返回可容纳轮廓的最小外包圆,其基本格式如下:

center, radius = cv2.minEnclosingCircle(contours)center为圆心radius为半径contours为用于计算最小外包圆的轮廓
img = cv2.imread('shape4.jpg')cv2.imshow('original', img)img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)img1 = np.zeros(img.shape, np.uint8) + 255cv2.drawContours(img1, contours, -1, (0,0,255) ,2)cv2.imshow('Contours',img1)# 计算最小外包圆(x, y), radius = cv2.minEnclosingCircle(contours[0])center = (int(x),int(y))radius = int(radius)img2 = img1.copy()cv2.circle(img2, center, radius, (255,0,0),2)cv2.imshow('Circle',img2)cv2.waitKey(0)cv2.destroyAllWindows()

在这里插入图片描述

九、轮廓的拟合椭圆

cv2.fitEllipse()函数用于返回轮廓的拟合椭圆,其基本格式如下:

ellipse = cv2.fitEllipse(contours)ellipse为返回的椭圆contours为用于计算拟合椭圆的轮廓
img = cv2.imread('shape4.jpg')cv2.imshow('original', img)img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)img1 = np.zeros(img.shape, np.uint8) + 255cv2.drawContours(img1, contours, -1, (0,0,255) ,2)cv2.imshow('Contours',img1)# 计算拟合椭圆ellipse = cv2.fitEllipse(contours[0])img2 = img1.copy()cv2.ellipse(img2, ellipse, (255,0,0),2)cv2.imshow('Circle',img2)cv2.waitKey(0)cv2.destroyAllWindows()

在这里插入图片描述

十、轮廓的拟合直线

cv2.fitLine()函数用于返回轮廓的拟合直线,其基本格式如下:

line = cv2.fitLine(contours, distType, param, reps, aeps)line为返回的拟合直线contours为用于计算拟合直线的轮廓distType为距离参数类型, 决定如何计算拟合直线param为距离参数, 与距离参数类型有关, 其设置为0时, 函数将自动选择最优值reps为计算拟合直线需要的径向精度, 通常设置为0.01aeps为计算拟合直线需要的轴向精度, 通常设置为0.01

param距离参数类型:

img = cv2.imread('shape4.jpg')            cv2.imshow('original', img)img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)img1 = np.zeros(img.shape, np.uint8) + 255      cv2.drawContours(img1, contours, -1, (0,0,255), 2)cv2.imshow('Contours',img1)#计算拟合直线img2 = img1.copy()rows, cols = img.shape[:2][vx, vy, x, y] = cv2.fitLine(contours[0], cv2.DIST_L1, 0, 0.01, 0.01)lefty = int((-x * vy / vx) + y)righty = int(((cols - x) * vy / vx) + y)cv2.line(img2, (0, lefty), (cols-1, righty), (255,0,0), 2)   cv2.imshow('FitLine',img2)  cv2.waitKey(0)cv2.destroyAllWindows()   

在这里插入图片描述

十一、轮廓的最小外包三角形

cv2.minEnclosingTriangle()函数用于返回可容纳轮廓的最小外包三角形,其基本格式如下:

retval, triangle = cv2.minEnclosingTriangle(contours)retval为最小外包三角形的面积triangle为最小外包三角形contours为用于计算最小外包三角形的轮廓
img = cv2.imread('shape4.jpg')cv2.imshow('original', img)img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)img1 = np.zeros(img.shape, np.uint8) + 255cv2.drawContours(img1, contours, -1, (0,0,255) ,2)cv2.imshow('Contours',img1)# 计算最小外包三角形retval, triangle = cv2.minEnclosingTriangle(contours[0])triangle = np.int0(triangle)img2 = img1.copy()cv2.polylines(img2, [triangle], True, (255,0,0),2)cv2.imshow('Triangle',img2)cv2.waitKey(0)cv2.destroyAllWindows()

在这里插入图片描述

以上就是OpenCV-Python图像轮廓之轮廓特征详解的详细内容,更多关于OpenCV-Python轮廓特征的资料请关注51zixue.net其它相关文章!


Python定时库APScheduler的原理以及用法示例
Python 切片索引越界的问题(数组下标越界)
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。