人们在使用SQL时往往会陷入一个误区,即太关注于所得的结果是否正确,而忽略了不同的实现方法之间可能存在的性能差异,这种性能差异在大型的或是复杂的数据库环境中(如联机事务处理OLTP或决策支持系统DSS)中表现得尤为明显。笔者在工作实践中发现,不良的SQL往往来自于不恰当的索引设计、不充份的连接条件和不可优化的where子句。在对它们进行适当的优化后,其运行速度有了明显地提高!下面我将从这三个方面分别进行总结: 为了更直观地说明问题,所有实例中的SQL运行时间均经过测试,不超过1秒的均表示为(< 1秒)。 测试环境-- 主机:HP LH II 主频:330MHZ 内存:128兆 操作系统:Operserver5.0.4 数据库:Sybase11.0.3 一、不合理的索引设计 例:表record有620000行,试看在不同的索引下,下面几个 SQL的运行情况: 1.在date上建有一非个群集索引 select count(*) from record where date > '19991201' and date < '19991214'and amount > 2000 (25秒) select date,sum(amount) from record group by date (55秒) select count(*) from record where date > '19990901' and place in ('BJ','SH') (27秒) 分析: date上有大量的重复值,在非群集索引下,数据在物理上随机存放在数据页上,在范围查找时,必须执行一次表扫描才能找到这一范围内的全部行。 <  
1/2 1 2 下一页 尾页 |