您当前的位置:首页 > IT编程 > C++
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:C++ CLOG函数代码示例

51自学网 2021-06-01 20:02:12
  C++
这篇教程C++ CLOG函数代码示例写得很实用,希望能帮到您。

本文整理汇总了C++中CLOG函数的典型用法代码示例。如果您正苦于以下问题:C++ CLOG函数的具体用法?C++ CLOG怎么用?C++ CLOG使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。

在下文中一共展示了CLOG函数的16个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C++代码示例。

示例1: CLOG

void CvBayesClassifier::onClearDataset() {	CLOG(LTRACE) << "CvBayesClassifier::onClearDataset/n";	training_dataset.clear();	training_responses.clear();	CLOG(LINFO) << "Training dataset cleared";}
开发者ID:maciek-slon,项目名称:DCL_CvBasic,代码行数:6,


示例2: LOG

void SIFTNOMWriter::WriteNormals() {	LOG(LTRACE) << "SIFTNOMWriter::WriteNormals";	// Try to save the model retrieved from the SOM data stream.	ptree ptree_file;	//if(in_cloud_xyzrgb_normals.empty()&&in_cloud_xyzsift.empty()&&in_mean_viewpoint_features_number.empty()){	//	CLOG(LWARNING) << "There are no required datastreams enabling save of the SOM to file.";	//	return;	//}	if (!in_som.empty()) {		LOG(LDEBUG) << "!in_som.empty()";		// Get SOM.		SIFTObjectModel* som = in_som.read();		// Save point cloud.		std::string name_cloud_xyzrgb_normals = std::string(dir) + std::string("/") + std::string(SOMname) + std::string("_xyzrgb_normals.pcd");		pcl::io::savePCDFileASCII (name_cloud_xyzrgb_normals, *(som->cloud_xyzrgb_normals));		CLOG(LTRACE) << "Write: saved " << som->cloud_xyzrgb_normals->points.size () << " cloud points to "<< name_cloud_xyzrgb_normals;		// Save feature cloud.		std::string name_cloud_xyzsift = std::string(dir) + std::string("/") + std::string(SOMname) + std::string("_xyzsift.pcd");		pcl::io::savePCDFileASCII (name_cloud_xyzsift, *(som->cloud_xyzsift));		CLOG(LTRACE) << "Write: saved " << som->cloud_xyzsift->points.size () << " feature points to "<< name_cloud_xyzsift;		// Save JSON model description.		ptree_file.put("name", SOMname);		ptree_file.put("type", "SIFTObjectModel");		ptree_file.put("mean_viewpoint_features_number", som->mean_viewpoint_features_number);		ptree_file.put("cloud_xyzsift", name_cloud_xyzsift);	}	// Try to save the model retrieved from the three separate data streams.	if (!in_cloud_xyzsift.empty() && !in_mean_viewpoint_features_number.empty()) {		LOG(LDEBUG) << "!in_cloud_xyzsift.empty() && !in_mean_viewpoint_features_number.empty()";		// Get model from datastreams.		pcl::PointCloud<PointXYZSIFT>::Ptr cloud_xyzsift = in_cloud_xyzsift.read();		int mean_viewpoint_features_number = in_mean_viewpoint_features_number.read();		// Save feature cloud.		std::string name_cloud_xyzsift = std::string(dir) + std::string("/") + std::string(SOMname) + std::string("_xyzsift.pcd");		pcl::io::savePCDFileASCII (name_cloud_xyzsift, *(cloud_xyzsift));		CLOG(LTRACE) << "Write: saved " << cloud_xyzsift->points.size () << " feature points to "<< name_cloud_xyzsift;		// Save JSON model description.		ptree_file.put("name", SOMname);		ptree_file.put("type", "SIFTObjectModel");		ptree_file.put("mean_viewpoint_features_number", mean_viewpoint_features_number);		ptree_file.put("cloud_xyzsift", name_cloud_xyzsift);	}	if (!in_cloud_xyzrgb_normals.empty()) {		LOG(LDEBUG) << "!in_cloud_xyzrgb_normals.empty()";		// Get model from datastreams.		pcl::PointCloud<pcl::PointXYZRGBNormal>::Ptr cloud_xyzrgb_normals = in_cloud_xyzrgb_normals.read();		// Save point cloud.		std::string name_cloud_xyzrgb_normals = std::string(dir) + std::string("/") + std::string(SOMname) + std::string("_xyzrgb_normals.pcd");		pcl::io::savePCDFileASCII (name_cloud_xyzrgb_normals, *(cloud_xyzrgb_normals));		CLOG(LTRACE) << "Write: saved " << cloud_xyzrgb_normals->points.size () << " cloud points to "<< name_cloud_xyzrgb_normals;		// Save JSON model description.		//ptree ptree_file;		ptree_file.put("name", SOMname);		ptree_file.put("type", "SIFTObjectModel");		ptree_file.put("cloud_xyzrgb_normals", name_cloud_xyzrgb_normals);	}	write_json (std::string(dir) + std::string("/") + std::string(SOMname) + std::string(".json"), ptree_file);}
开发者ID:DisCODe,项目名称:SIFTObjectModel,代码行数:83,


示例3: CLOG

void CalcStatistics::calculate() {	CLOG(LDEBUG)<<"in calculate()";	Types::HomogMatrix homogMatrix;	cv::Mat_<double> rvec;	cv::Mat_<double> tvec;	cv::Mat_<double> axis;	cv::Mat_<double> rotMatrix;	float fi;	rotMatrix= cv::Mat_<double>::zeros(3,3);	tvec = cv::Mat_<double>::zeros(3,1);	axis = cv::Mat_<double>::zeros(3,1);	// first homogMatrix on InputStream	if(counter == 0) {		homogMatrix = in_homogMatrix.read();		for (int i = 0; i < 3; ++i) {			for (int j = 0; j < 3; ++j) {		                rotMatrix(i,j)=homogMatrix(i, j);			}			tvec(i, 0) = homogMatrix(i, 3);		}		Rodrigues(rotMatrix, rvec);		cumulatedHomogMatrix = homogMatrix;		cumulatedTvec = tvec;		cumulatedRvec = rvec;		fi = sqrt((pow(rvec(0,0), 2) + pow(rvec(1,0), 2)+pow(rvec(2,0),2)));		cumulatedFi = fi;		for(int k=0;k<3;k++) {			axis(k,0)=rvec(k,0)/fi;		}		cumulatedAxis = axis;		counter=1;		return;	}	homogMatrix=in_homogMatrix.read();	for (int i = 0; i < 3; ++i) {		for (int j = 0; j < 3; ++j) {            rotMatrix(i,j)=homogMatrix(i, j);		}        tvec(i, 0) = homogMatrix(i, 3);	}	Rodrigues(rotMatrix, rvec);	fi = sqrt((pow(rvec(0,0), 2) + pow(rvec(1,0), 2)+pow(rvec(2,0),2)));	for(int k=0;k<3;k++) {			axis(k,0)=rvec(k,0)/fi;	}	cumulatedFi += fi;	cumulatedTvec += tvec;	cumulatedRvec += rvec;	cumulatedAxis += axis;	counter++;	avgFi = cumulatedFi/counter;	avgAxis = cumulatedAxis/counter;	avgRvec = avgAxis * avgFi;	avgTvec = cumulatedTvec/counter;	Types::HomogMatrix hm;	cv::Mat_<double> rottMatrix;	Rodrigues(avgRvec, rottMatrix);	CLOG(LINFO)<<"U
C++ CLOSURE函数代码示例
C++ CLOCK_EnableClock函数代码示例
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。