这篇教程Python layers.MaxPool2D方法代码示例写得很实用,希望能帮到您。
本文整理汇总了Python中keras.layers.MaxPool2D方法的典型用法代码示例。如果您正苦于以下问题:Python layers.MaxPool2D方法的具体用法?Python layers.MaxPool2D怎么用?Python layers.MaxPool2D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.layers 的用法示例。 在下文中一共展示了layers.MaxPool2D方法的26个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。 示例1: gettest_model# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import MaxPool2D [as 别名]def gettest_model(): input = Input(shape=[16, 66, 3]) # change this shape to [None,None,3] to enable arbitraty shape input A = Conv2D(10, (3, 3), strides=1, padding='valid', name='conv1')(input) B = Activation("relu", name='relu1')(A) C = MaxPool2D(pool_size=2)(B) x = Conv2D(16, (3, 3), strides=1, padding='valid', name='conv2')(C) x = Activation("relu", name='relu2')(x) x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv3')(x) K = Activation("relu", name='relu3')(x) x = Flatten()(K) dense = Dense(2,name = "dense")(x) output = Activation("relu", name='relu4')(dense) x = Model([input], [output]) x.load_weights("./model/model12.h5") ok = Model([input], [dense]) for layer in ok.layers: print(layer) return ok
示例2: convolutional_autoencoder# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import MaxPool2D [as 别名]def convolutional_autoencoder(): input_shape=(28,28,1) n_channels = input_shape[-1] model = Sequential() model.add(Conv2D(32, (3,3), activation='relu', padding='same', input_shape=input_shape)) model.add(MaxPool2D(padding='same')) model.add(Conv2D(16, (3,3), activation='relu', padding='same')) model.add(MaxPool2D(padding='same')) model.add(Conv2D(8, (3,3), activation='relu', padding='same')) model.add(UpSampling2D()) model.add(Conv2D(16, (3,3), activation='relu', padding='same')) model.add(UpSampling2D()) model.add(Conv2D(32, (3,3), activation='relu', padding='same')) model.add(Conv2D(n_channels, (3,3), activation='sigmoid', padding='same')) return model
开发者ID:otenim,项目名称:AnomalyDetectionUsingAutoencoder,代码行数:18,代码来源:models.py
示例3: model_definition# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import MaxPool2D [as 别名]def model_definition(): """ Keras RNetwork for MTCNN """ input_ = Input(shape=(24, 24, 3)) var_x = Conv2D(28, (3, 3), strides=1, padding='valid', name='conv1')(input_) var_x = PReLU(shared_axes=[1, 2], name='prelu1')(var_x) var_x = MaxPool2D(pool_size=3, strides=2, padding='same')(var_x) var_x = Conv2D(48, (3, 3), strides=1, padding='valid', name='conv2')(var_x) var_x = PReLU(shared_axes=[1, 2], name='prelu2')(var_x) var_x = MaxPool2D(pool_size=3, strides=2)(var_x) var_x = Conv2D(64, (2, 2), strides=1, padding='valid', name='conv3')(var_x) var_x = PReLU(shared_axes=[1, 2], name='prelu3')(var_x) var_x = Permute((3, 2, 1))(var_x) var_x = Flatten()(var_x) var_x = Dense(128, name='conv4')(var_x) var_x = PReLU(name='prelu4')(var_x) classifier = Dense(2, activation='softmax', name='conv5-1')(var_x) bbox_regress = Dense(4, name='conv5-2')(var_x) return [input_], [classifier, bbox_regress]
开发者ID:deepfakes,项目名称:faceswap,代码行数:22,代码来源:mtcnn.py
示例4: create_Kao_Onet# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import MaxPool2D [as 别名]def create_Kao_Onet( weight_path = 'model48.h5'): input = Input(shape = [48,48,3]) x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv1')(input) x = PReLU(shared_axes=[1,2],name='prelu1')(x) x = MaxPool2D(pool_size=3, strides=2, padding='same')(x) x = Conv2D(64, (3, 3), strides=1, padding='valid', name='conv2')(x) x = PReLU(shared_axes=[1,2],name='prelu2')(x) x = MaxPool2D(pool_size=3, strides=2)(x) x = Conv2D(64, (3, 3), strides=1, padding='valid', name='conv3')(x) x = PReLU(shared_axes=[1,2],name='prelu3')(x) x = MaxPool2D(pool_size=2)(x) x = Conv2D(128, (2, 2), strides=1, padding='valid', name='conv4')(x) x = PReLU(shared_axes=[1,2],name='prelu4')(x) x = Permute((3,2,1))(x) x = Flatten()(x) x = Dense(256, name='conv5') (x) x = PReLU(name='prelu5')(x) classifier = Dense(2, activation='softmax',name='conv6-1')(x) bbox_regress = Dense(4,name='conv6-2')(x) landmark_regress = Dense(10,name='conv6-3')(x) model = Model([input], [classifier, bbox_regress, landmark_regress]) model.load_weights(weight_path, by_name=True) return model
示例5: create_Kao_Rnet# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import MaxPool2D [as 别名]def create_Kao_Rnet (weight_path = 'model24.h5'): input = Input(shape=[24, 24, 3]) # change this shape to [None,None,3] to enable arbitraty shape input x = Conv2D(28, (3, 3), strides=1, padding='valid', name='conv1')(input) x = PReLU(shared_axes=[1, 2], name='prelu1')(x) x = MaxPool2D(pool_size=3,strides=2, padding='same')(x) x = Conv2D(48, (3, 3), strides=1, padding='valid', name='conv2')(x) x = PReLU(shared_axes=[1, 2], name='prelu2')(x) x = MaxPool2D(pool_size=3, strides=2)(x) x = Conv2D(64, (2, 2), strides=1, padding='valid', name='conv3')(x) x = PReLU(shared_axes=[1, 2], name='prelu3')(x) x = Permute((3, 2, 1))(x) x = Flatten()(x) x = Dense(128, name='conv4')(x) x = PReLU( name='prelu4')(x) classifier = Dense(2, activation='softmax', name='conv5-1')(x) bbox_regress = Dense(4, name='conv5-2')(x) model = Model([input], [classifier, bbox_regress]) model.load_weights(weight_path, by_name=True) return model
示例6: get_convnet_landslide_all# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import MaxPool2D [as 别名]def get_convnet_landslide_all(args) -> Model: input_shape = (args.area_size, args.area_size, 14) model = Sequential() model.add(Conv2D(8, 3, 3, input_shape=input_shape, init='normal')) model.add(Activation('relu')) model.add(Conv2D(8, 3, 3, init='normal')) model.add(Activation('relu')) model.add(MaxPool2D((1, 1), strides=(1, 1))) model.add(Dropout(0.25)) model.add(Flatten(name="flatten")) # model.add(Dense(512, activation='relu', name='dense', init='normal')) model.add(Dropout(0.25)) model.add(Dense(1, name='last_layer')) model.add(Activation('sigmoid')) return model
示例7: get_model_1# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import MaxPool2D [as 别名]def get_model_1(args): model = Sequential() model.add(Conv2D(32, (5, 5), input_shape=(args.area_size, args.area_size, 14))) model.add(Activation('relu')) model.add(Conv2D(16, (3, 3))) model.add(Activation('relu')) model.add(MaxPool2D((1, 1), strides=(1, 1))) model.add(Dropout(0.25)) # model.add(AvgPool2D((3, 3), strides=(1, 1))) model.add(Flatten(name="flatten")) # model.add(Dense(1, name='last_layer')) model.add(Activation('sigmoid')) return model
示例8: get_model_cifar# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import MaxPool2D [as 别名]def get_model_cifar(args): model = Sequential() model.add(Conv2D(32, (3, 3), padding='same', input_shape=(args.area_size, args.area_size, 14))) model.add(Activation('relu')) model.add(Conv2D(32, (3, 3))) model.add(Activation('relu')) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(64, (3, 3), padding='same')) model.add(Activation('relu')) model.add(Conv2D(64, (3, 3))) model.add(Activation('relu')) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(512)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(1)) model.add(Activation('sigmoid')) return model
示例9: create_Pnet# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import MaxPool2D [as 别名]def create_Pnet(weight_path): input = Input(shape=[None, None, 3]) x = Conv2D(10, (3, 3), strides=1, padding='valid', name='conv1')(input) x = PReLU(shared_axes=[1,2],name='PReLU1')(x) x = MaxPool2D(pool_size=2)(x) x = Conv2D(16, (3, 3), strides=1, padding='valid', name='conv2')(x) x = PReLU(shared_axes=[1,2],name='PReLU2')(x) x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv3')(x) x = PReLU(shared_axes=[1,2],name='PReLU3')(x) classifier = Conv2D(2, (1, 1), activation='softmax', name='conv4-1')(x) # 无激活函数,线性。 bbox_regress = Conv2D(4, (1, 1), name='conv4-2')(x) model = Model([input], [classifier, bbox_regress]) model.load_weights(weight_path, by_name=True) return model#-----------------------------## mtcnn的第二段# 精修框#-----------------------------#
开发者ID:bubbliiiing,项目名称:mtcnn-keras,代码行数:27,代码来源:mtcnn.py
示例10: down_sample# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import MaxPool2D [as 别名]def down_sample(self, x, filters): x_filters = int(x.shape[-1]) x_conv = layers.Conv2D(filters - x_filters, kernel_size=3, strides=(2, 2), padding='same')(x) x_pool = layers.MaxPool2D()(x) x = layers.concatenate([x_conv, x_pool], axis=-1) x = layers.BatchNormalization()(x) x = layers.Activation('relu')(x) return x
开发者ID:JACKYLUO1991,项目名称:Face-skin-hair-segmentaiton-and-skin-color-evaluation,代码行数:10,代码来源:lednet.py
示例11: _SPP_block# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import MaxPool2D [as 别名]def _SPP_block(inp, kernels, strides): pools = [MaxPool2D(pool_size = pool_size, strides = stride, padding = 'same')(inp) / for pool_size, stride in zip(kernels, strides)] pools = [inp] + pools return concatenate(pools)#Downsampling block is common to all YOLO-v3 models and are unaffected by the SPP or fully connected blocks or the number of labes
示例12: create_Pnet# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import MaxPool2D [as 别名]def create_Pnet(weight_path): # h,w input = Input(shape=[None, None, 3]) # h,w,3 -> h/2,w/2,10 x = Conv2D(10, (3, 3), strides=1, padding='valid', name='conv1')(input) x = PReLU(shared_axes=[1,2],name='PReLU1')(x) x = MaxPool2D(pool_size=2)(x) # h/2,w/2,10 -> h/2,w/2,16 x = Conv2D(16, (3, 3), strides=1, padding='valid', name='conv2')(x) x = PReLU(shared_axes=[1,2],name='PReLU2')(x) # h/2,w/2,32 x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv3')(x) x = PReLU(shared_axes=[1,2],name='PReLU3')(x) # h/2, w/2, 2 classifier = Conv2D(2, (1, 1), activation='softmax', name='conv4-1')(x) # 无激活函数,线性。 # h/2, w/2, 4 bbox_regress = Conv2D(4, (1, 1), name='conv4-2')(x) model = Model([input], [classifier, bbox_regress]) model.load_weights(weight_path, by_name=True) return model#-----------------------------## mtcnn的第二段# 精修框#-----------------------------#
开发者ID:bubbliiiing,项目名称:keras-face-recognition,代码行数:32,代码来源:mtcnn.py
示例13: create_Rnet# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import MaxPool2D [as 别名]def create_Rnet(weight_path): input = Input(shape=[24, 24, 3]) # 24,24,3 -> 11,11,28 x = Conv2D(28, (3, 3), strides=1, padding='valid', name='conv1')(input) x = PReLU(shared_axes=[1, 2], name='prelu1')(x) x = MaxPool2D(pool_size=3,strides=2, padding='same')(x) # 11,11,28 -> 4,4,48 x = Conv2D(48, (3, 3), strides=1, padding='valid', name='conv2')(x) x = PReLU(shared_axes=[1, 2], name='prelu2')(x) x = MaxPool2D(pool_size=3, strides=2)(x) # 4,4,48 -> 3,3,64 x = Conv2D(64, (2, 2), strides=1, padding='valid', name='conv3')(x) x = PReLU(shared_axes=[1, 2], name='prelu3')(x) # 3,3,64 -> 64,3,3 x = Permute((3, 2, 1))(x) x = Flatten()(x) # 576 -> 128 x = Dense(128, name='conv4')(x) x = PReLU( name='prelu4')(x) # 128 -> 2 128 -> 4 classifier = Dense(2, activation='softmax', name='conv5-1')(x) bbox_regress = Dense(4, name='conv5-2')(x) model = Model([input], [classifier, bbox_regress]) model.load_weights(weight_path, by_name=True) return model#-----------------------------## mtcnn的第三段# 精修框并获得五个点#-----------------------------#
开发者ID:bubbliiiing,项目名称:keras-face-recognition,代码行数:34,代码来源:mtcnn.py
示例14: create_Onet# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import MaxPool2D [as 别名]def create_Onet(weight_path): input = Input(shape = [48,48,3]) # 48,48,3 -> 23,23,32 x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv1')(input) x = PReLU(shared_axes=[1,2],name='prelu1')(x) x = MaxPool2D(pool_size=3, strides=2, padding='same')(x) # 23,23,32 -> 10,10,64 x = Conv2D(64, (3, 3), strides=1, padding='valid', name='conv2')(x) x = PReLU(shared_axes=[1,2],name='prelu2')(x) x = MaxPool2D(pool_size=3, strides=2)(x) # 8,8,64 -> 4,4,64 x = Conv2D(64, (3, 3), strides=1, padding='valid', name='conv3')(x) x = PReLU(shared_axes=[1,2],name='prelu3')(x) x = MaxPool2D(pool_size=2)(x) # 4,4,64 -> 3,3,128 x = Conv2D(128, (2, 2), strides=1, padding='valid', name='conv4')(x) x = PReLU(shared_axes=[1,2],name='prelu4')(x) # 3,3,128 -> 128,3,3 x = Permute((3,2,1))(x) # 1152 -> 256 x = Flatten()(x) x = Dense(256, name='conv5') (x) x = PReLU(name='prelu5')(x) # 鉴别 # 256 -> 2 256 -> 4 256 -> 10 classifier = Dense(2, activation='softmax',name='conv6-1')(x) bbox_regress = Dense(4,name='conv6-2')(x) landmark_regress = Dense(10,name='conv6-3')(x) model = Model([input], [classifier, bbox_regress, landmark_regress]) model.load_weights(weight_path, by_name=True) return model
开发者ID:bubbliiiing,项目名称:keras-face-recognition,代码行数:37,代码来源:mtcnn.py
示例15: tiny_yolo_main# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import MaxPool2D [as 别名]def tiny_yolo_main(input, num_anchors, num_classes): network_1 = NetworkConv2D_BN_Leaky(input=input, channels=16, kernel_size=(3,3) ) network_1 = MaxPool2D(pool_size=(2,2), strides=(2,2), padding="same")(network_1) network_1 = NetworkConv2D_BN_Leaky(input=network_1, channels=32, kernel_size=(3, 3)) network_1 = MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding="same")(network_1) network_1 = NetworkConv2D_BN_Leaky(input=network_1, channels=64, kernel_size=(3, 3)) network_1 = MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding="same")(network_1) network_1 = NetworkConv2D_BN_Leaky(input=network_1, channels=128, kernel_size=(3, 3)) network_1 = MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding="same")(network_1) network_1 = NetworkConv2D_BN_Leaky(input=network_1, channels=256, kernel_size=(3, 3)) network_2 = MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding="same")(network_1) network_2 = NetworkConv2D_BN_Leaky(input=network_2, channels=512, kernel_size=(3, 3)) network_2 = MaxPool2D(pool_size=(2, 2), strides=(1, 1), padding="same")(network_2) network_2 = NetworkConv2D_BN_Leaky(input=network_2, channels=1024, kernel_size=(3, 3)) network_2 = NetworkConv2D_BN_Leaky(input=network_2, channels=256, kernel_size=(1, 1)) network_3 = NetworkConv2D_BN_Leaky(input=network_2, channels=512, kernel_size=(3, 3)) network_3 = Conv2D(num_anchors * (num_classes + 5), kernel_size=(1,1))(network_3) network_2 = NetworkConv2D_BN_Leaky(input=network_2, channels=128, kernel_size=(1, 1)) network_2 = UpSampling2D(2)(network_2) network_4 = Concatenate()([network_2, network_1]) network_4 = NetworkConv2D_BN_Leaky(input=network_4, channels=256, kernel_size=(3, 3)) network_4 = Conv2D(num_anchors * (num_classes + 5), kernel_size=(1,1))(network_4) return Model(input, [network_3, network_4])
开发者ID:OlafenwaMoses,项目名称:ImageAI,代码行数:30,代码来源:models.py
示例16: Getmodel_tensorflow# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import MaxPool2D [as 别名]def Getmodel_tensorflow(nb_classes): # nb_classes = len(charset) img_rows, img_cols = 9, 34 # number of convolutional filters to use nb_filters = 32 # size of pooling area for max pooling nb_pool = 2 # convolution kernel size nb_conv = 3 # x = np.load('x.npy') # y = np_utils.to_categorical(range(3062)*45*5*2, nb_classes) # weight = ((type_class - np.arange(type_class)) / type_class + 1) ** 3 # weight = dict(zip(range(3063), weight / weight.mean())) # 调整权重,高频字优先 model = Sequential() model.add(Conv2D(16, (5, 5),input_shape=(img_rows, img_cols,3))) model.add(Activation('relu')) model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) model.add(Flatten()) model.add(Dense(64)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(nb_classes)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model
示例17: getModel# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import MaxPool2D [as 别名]def getModel(): input = Input(shape=[16, 66, 3]) # change this shape to [None,None,3] to enable arbitraty shape input x = Conv2D(10, (3, 3), strides=1, padding='valid', name='conv1')(input) x = Activation("relu", name='relu1')(x) x = MaxPool2D(pool_size=2)(x) x = Conv2D(16, (3, 3), strides=1, padding='valid', name='conv2')(x) x = Activation("relu", name='relu2')(x) x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv3')(x) x = Activation("relu", name='relu3')(x) x = Flatten()(x) output = Dense(2,name = "dense")(x) output = Activation("relu", name='relu4')(output) model = Model([input], [output]) return model
示例18: Getmodel_tensorflow# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import MaxPool2D [as 别名]def Getmodel_tensorflow(nb_classes): # nb_classes = len(charset) img_rows, img_cols = 23, 23 # number of convolutional filters to use nb_filters = 16 # size of pooling area for max pooling nb_pool = 2 # convolution kernel size nb_conv = 3 # x = np.load('x.npy') # y = np_utils.to_categorical(range(3062)*45*5*2, nb_classes) # weight = ((type_class - np.arange(type_class)) / type_class + 1) ** 3 # weight = dict(zip(range(3063), weight / weight.mean())) # 调整权重,高频字优先 model = Sequential() model.add(Conv2D(nb_filters, (nb_conv, nb_conv),input_shape=(img_rows, img_cols,1))) model.add(Activation('relu')) model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) model.add(Conv2D(nb_filters, (nb_conv, nb_conv))) model.add(Activation('relu')) model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) model.add(Flatten()) model.add(Dense(256)) model.add(Dropout(0.5)) model.add(Activation('relu')) model.add(Dense(nb_classes)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) return model
示例19: Getmodel_tensorflow_light# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import MaxPool2D [as 别名]def Getmodel_tensorflow_light(nb_classes): # nb_classes = len(charset) img_rows, img_cols = 23, 23 # number of convolutional filters to use nb_filters = 8 # size of pooling area for max pooling nb_pool = 2 # convolution kernel size nb_conv = 3 # x = np.load('x.npy') # y = np_utils.to_categorical(range(3062)*45*5*2, nb_classes) # weight = ((type_class - np.arange(type_class)) / type_class + 1) ** 3 # weight = dict(zip(range(3063), weight / weight.mean())) # 调整权重,高频字优先 model = Sequential() model.add(Conv2D(nb_filters, (nb_conv, nb_conv),input_shape=(img_rows, img_cols, 1))) model.add(Activation('relu')) model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) model.add(Conv2D(nb_filters, (nb_conv * 2, nb_conv * 2))) model.add(Activation('relu')) model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) model.add(Flatten()) model.add(Dense(32)) # model.add(Dropout(0.25)) model.add(Activation('relu')) model.add(Dense(nb_classes)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model
示例20: Getmodel_ch# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import MaxPool2D [as 别名]def Getmodel_ch(nb_classes): # nb_classes = len(charset) img_rows, img_cols = 23, 23 # number of convolutional filters to use nb_filters = 32 # size of pooling area for max pooling nb_pool = 2 # convolution kernel size nb_conv = 3 # x = np.load('x.npy') # y = np_utils.to_categorical(range(3062)*45*5*2, nb_classes) # weight = ((type_class - np.arange(type_class)) / type_class + 1) ** 3 # weight = dict(zip(range(3063), weight / weight.mean())) # 调整权重,高频字优先 model = Sequential() model.add(Conv2D(32, (5, 5),input_shape=(img_rows, img_cols,1))) model.add(Activation('relu')) model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) model.add(Dropout(0.25)) model.add(Conv2D(32, (3, 3))) model.add(Activation('relu')) model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) model.add(Dropout(0.25)) model.add(Conv2D(512, (3, 3))) # model.add(Activation('relu')) # model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool))) # model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(756)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(nb_classes)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model
示例21: ResNet50# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import MaxPool2D [as 别名]def ResNet50(input_shape, num_classes=10): input_object = Input(shape=input_shape) layers = [3, 4, 6, 3] channel_depths = [256, 512, 1024, 2048] output = Conv2D(64, kernel_size=7, strides=2, padding="same", kernel_initializer="he_normal")(input_object) output = BatchNormalization()(output) output = Activation("relu")(output) output = MaxPool2D(pool_size=(3, 3), strides=(2, 2))(output) output = resnet_first_block_first_module(output, channel_depths[0]) for i in range(4): channel_depth = channel_depths[i] num_layers = layers[i] strided_pool_first = True if (i == 0): strided_pool_first = False num_layers = num_layers - 1 output = resnet_block(output, channel_depth=channel_depth, num_layers=num_layers, strided_pool_first=strided_pool_first) output = GlobalAvgPool2D()(output) output = Dense(num_classes)(output) output = Activation("softmax")(output) model = Model(inputs=input_object, outputs=output) return model
开发者ID:OlafenwaMoses,项目名称:IdenProf,代码行数:32,代码来源:idenprof.py
示例22: create_model# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import MaxPool2D [as 别名]def create_model(self, hyper_parameters): """ 构建神经网络 :param hyper_parameters:json, hyper parameters of network :return: tensor, moedl """ super().create_model(hyper_parameters) embedding = self.word_embedding.output embedding_reshape = Reshape((self.len_max, self.embed_size, 1))(embedding) # 提取n-gram特征和最大池化, 一般不用平均池化 conv_pools = [] for filter in self.filters: conv = Conv2D(filters = self.filters_num, kernel_size = (filter, self.embed_size), padding = 'valid', kernel_initializer = 'normal', activation = 'relu', )(embedding_reshape) pooled = MaxPool2D(pool_size = (self.len_max - filter + 1, 1), strides = (1, 1), padding = 'valid', )(conv) conv_pools.append(pooled) # 拼接 x = Concatenate(axis=-1)(conv_pools) x = Flatten()(x) x = Dropout(self.dropout)(x) output = Dense(units=self.label, activation=self.activate_classify)(x) self.model = Model(inputs=self.word_embedding.input, outputs=output) self.model.summary(120)
开发者ID:yongzhuo,项目名称:Keras-TextClassification,代码行数:32,代码来源:graph.py
示例23: main# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import MaxPool2D [as 别名]def main(): input_tensor = Input((72, 272, 3)) x = input_tensor print("build model") x = Conv2D(32, kernel_size=(3, 3), activation='relu')(x) x = Conv2D(32, kernel_size=(3, 3), activation='relu')(x) x = MaxPool2D(pool_size=(2, 2))(x) x = Conv2D(64, kernel_size=(3, 3), activation='relu')(x) x = Conv2D(64, kernel_size=(3, 3), activation='relu')(x) x = MaxPool2D(pool_size=(2, 2))(x) x = Dropout(0.3)(x) x = Conv2D(128, kernel_size=(3, 3), activation='relu')(x) x = Conv2D(128, kernel_size=(3, 3), activation='relu')(x) x = MaxPool2D(pool_size=(2, 2))(x) x = Dropout(0.3)(x) x = Flatten()(x) x = Dropout(0.5)(x) n_class = len(chars) x = [Dense(n_class, activation='softmax', name='c{0}'.format(i + 1))(x) for i in range(7)] model = Model(inputs=input_tensor, outputs=x) print("compile model") adam = Adam(lr=0.001) model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['accuracy']) # display plot_model(model,to_file='./models/licenseplate_model.png') # training print("training model") best_model = ModelCheckpoint("./models/licenseplate.h5", monitor='val_loss', verbose=0, save_best_only=True) model.fit_generator(gen_plate(), steps_per_epoch=2000, epochs=8, validation_data=gen_plate(), validation_steps=1280, callbacks=[best_model])
示例24: to_real_keras_layer# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import MaxPool2D [as 别名]def to_real_keras_layer(layer): """ Real keras layer. """ from keras import layers if is_layer(layer, "Dense"): return layers.Dense(layer.units, input_shape=(layer.input_units,)) if is_layer(layer, "Conv"): return layers.Conv2D( layer.filters, layer.kernel_size, input_shape=layer.input.shape, padding="same", ) # padding if is_layer(layer, "Pooling"): return layers.MaxPool2D(2) if is_layer(layer, "BatchNormalization"): return layers.BatchNormalization(input_shape=layer.input.shape) if is_layer(layer, "Concatenate"): return layers.Concatenate() if is_layer(layer, "Add"): return layers.Add() if is_layer(layer, "Dropout"): return keras_dropout(layer, layer.rate) if is_layer(layer, "ReLU"): return layers.Activation("relu") if is_layer(layer, "Softmax"): return layers.Activation("softmax") if is_layer(layer, "Flatten"): return layers.Flatten() if is_layer(layer, "GlobalAveragePooling"): return layers.GlobalAveragePooling2D() return None # note: this is not written by original author, feel free to modify if you think it's incorrect
开发者ID:microsoft,项目名称:nni,代码行数:36,代码来源:layers.py
示例25: create_Kao_Pnet# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import MaxPool2D [as 别名]def create_Kao_Pnet( weight_path = 'model12old.h5'): input = Input(shape=[None, None, 3]) x = Conv2D(10, (3, 3), strides=1, padding='valid', name='conv1')(input) x = PReLU(shared_axes=[1,2],name='PReLU1')(x) x = MaxPool2D(pool_size=2)(x) x = Conv2D(16, (3, 3), strides=1, padding='valid', name='conv2')(x) x = PReLU(shared_axes=[1,2],name='PReLU2')(x) x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv3')(x) x = PReLU(shared_axes=[1,2],name='PReLU3')(x) classifier = Conv2D(2, (1, 1), activation='softmax', name='conv4-1')(x) bbox_regress = Conv2D(4, (1, 1), name='conv4-2')(x) model = Model([input], [classifier, bbox_regress]) model.load_weights(weight_path, by_name=True) return model
示例26: get_model_2# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import MaxPool2D [as 别名]def get_model_2(args): model = Sequential() model.add(Conv2D(32, (5, 1), padding="same", input_shape=(args.area_size, args.area_size, 14))) model.add(Activation('relu')) model.add(Conv2D(32, (1, 5), padding="same")) model.add(Maxout()) model.add(Conv2D(32, (5, 1), padding="same")) model.add(Activation('relu')) model.add(Conv2D(32, (1, 5), padding="same")) model.add(Maxout()) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(0.25)) # model.add(Conv2D(16, (3, 1), padding="same")) model.add(Activation('relu')) model.add(Conv2D(16, (1, 3), padding="same")) model.add(Maxout()) model.add(Conv2D(16, (3, 1), padding="same")) model.add(Activation('relu')) model.add(Conv2D(16, (1, 3), padding="same")) model.add(Maxout()) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(0.25)) # model.add(AvgPool2D((3, 3), strides=(1, 1))) model.add(Flatten(name="flatten")) # model.add(Dense(1, name='last_layer')) model.add(Activation('sigmoid')) return model
|