这篇教程Python layers.Masking方法代码示例写得很实用,希望能帮到您。
本文整理汇总了Python中keras.layers.Masking方法的典型用法代码示例。如果您正苦于以下问题:Python layers.Masking方法的具体用法?Python layers.Masking怎么用?Python layers.Masking使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.layers 的用法示例。 在下文中一共展示了layers.Masking方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。 示例1: get_audio_model# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Masking [as 别名]def get_audio_model(self): # Modality specific hyperparameters self.epochs = 100 self.batch_size = 50 # Modality specific parameters self.embedding_dim = self.train_x.shape[2] print("Creating Model...") inputs = Input(shape=(self.sequence_length, self.embedding_dim), dtype='float32') masked = Masking(mask_value =0)(inputs) lstm = Bidirectional(LSTM(300, activation='tanh', return_sequences = True, dropout=0.4))(masked) lstm = Bidirectional(LSTM(300, activation='tanh', return_sequences = True, dropout=0.4), name="utter")(lstm) output = TimeDistributed(Dense(self.classes,activation='softmax'))(lstm) model = Model(inputs, output) return model
示例2: get_bimodal_model# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Masking [as 别名]def get_bimodal_model(self): # Modality specific hyperparameters self.epochs = 100 self.batch_size = 10 # Modality specific parameters self.embedding_dim = self.train_x.shape[2] print("Creating Model...") inputs = Input(shape=(self.sequence_length, self.embedding_dim), dtype='float32') masked = Masking(mask_value =0)(inputs) lstm = Bidirectional(LSTM(300, activation='tanh', return_sequences = True, dropout=0.4), name="utter")(masked) output = TimeDistributed(Dense(self.classes,activation='softmax'))(lstm) model = Model(inputs, output) return model
示例3: _build_model# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Masking [as 别名]def _build_model(self, num_features, num_actions, max_history_len): """Build a keras model and return a compiled model. :param max_history_len: The maximum number of historical turns used to decide on next action""" from keras.layers import LSTM, Activation, Masking, Dense from keras.models import Sequential n_hidden = 32 # size of hidden layer in LSTM # Build Model batch_shape = (None, max_history_len, num_features) model = Sequential() model.add(Masking(-1, batch_input_shape=batch_shape)) model.add(LSTM(n_hidden, batch_input_shape=batch_shape)) model.add(Dense(input_dim=n_hidden, output_dim=num_actions)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) logger.debug(model.summary()) return model
示例4: _build_model# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Masking [as 别名]def _build_model(self, num_features, num_actions, max_history_len): """Build a keras model and return a compiled model. :param max_history_len: The maximum number of historical turns used to decide on next action""" from keras.layers import Activation, Masking, Dense, SimpleRNN from keras.models import Sequential n_hidden = 8 # size of hidden layer in RNN # Build Model batch_input_shape = (None, max_history_len, num_features) model = Sequential() model.add(Masking(-1, batch_input_shape=batch_input_shape)) model.add(SimpleRNN(n_hidden, batch_input_shape=batch_input_shape)) model.add(Dense(input_dim=n_hidden, output_dim=num_actions)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) logger.debug(model.summary()) return model
开发者ID:Rowl1ng,项目名称:rasa_wechat,代码行数:25,代码来源:policy.py
示例5: _build_model# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Masking [as 别名]def _build_model(self, num_features, num_actions, max_history_len): """Build a keras model and return a compiled model. :param max_history_len: The maximum number of historical turns used to decide on next action """ from keras.layers import LSTM, Activation, Masking, Dense from keras.models import Sequential n_hidden = 32 # Neural Net and training params batch_shape = (None, max_history_len, num_features) # Build Model model = Sequential() model.add(Masking(-1, batch_input_shape=batch_shape)) model.add(LSTM(n_hidden, batch_input_shape=batch_shape)) model.add(Dense(input_dim=n_hidden, units=num_actions)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy']) logger.debug(model.summary()) return model
示例6: model_masking# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Masking [as 别名]def model_masking(discrete_time, init_alpha, max_beta): model = Sequential() model.add(Masking(mask_value=mask_value, input_shape=(n_timesteps, n_features))) model.add(TimeDistributed(Dense(2))) model.add(Lambda(wtte.output_lambda, arguments={"init_alpha": init_alpha, "max_beta_value": max_beta})) if discrete_time: loss = wtte.loss(kind='discrete', reduce_loss=False).loss_function else: loss = wtte.loss(kind='continuous', reduce_loss=False).loss_function model.compile(loss=loss, optimizer=RMSprop( lr=lr), sample_weight_mode='temporal') return model
示例7: model_architecture# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Masking [as 别名]def model_architecture(self, num_features, num_actions, max_history_len): """Build a Keras model and return a compiled model.""" from keras.layers import LSTM, Activation, Masking, Dense from keras.models import Sequential n_hidden = 32 # size of hidden layer in LSTM # Build Model batch_shape = (None, max_history_len, num_features) model = Sequential() model.add(Masking(-1, batch_input_shape=batch_shape)) model.add(LSTM(n_hidden, batch_input_shape=batch_shape)) model.add(Dense(input_dim=n_hidden, output_dim=num_actions)) model.add(Activation("softmax")) model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) logger.debug(model.summary()) return model
开发者ID:Ma-Dan,项目名称:rasa_bot,代码行数:23,代码来源:bot.py
示例8: create_network# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Masking [as 别名]def create_network(nb_features, nb_labels, padding_value): # Define the network architecture input_data = Input(name='input', shape=(None, nb_features)) # nb_features = image height masking = Masking(mask_value=padding_value)(input_data) noise = GaussianNoise(0.01)(masking) blstm = Bidirectional(LSTM(128, return_sequences=True, dropout=0.1))(noise) blstm = Bidirectional(LSTM(128, return_sequences=True, dropout=0.1))(blstm) blstm = Bidirectional(LSTM(128, return_sequences=True, dropout=0.1))(blstm) dense = TimeDistributed(Dense(nb_labels + 1, name="dense"))(blstm) outrnn = Activation('softmax', name='softmax')(dense) network = CTCModel([input_data], [outrnn]) network.compile(Adam(lr=0.0001)) return network
开发者ID:ysoullard,项目名称:CTCModel,代码行数:20,代码来源:example.py
示例9: creat_model# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Masking [as 别名]def creat_model(input_shape, num_class): init = initializers.Orthogonal(gain=args.norm) sequence_input =Input(shape=input_shape) mask = Masking(mask_value=0.)(sequence_input) if args.aug: mask = augmentaion()(mask) X = Noise(0.075)(mask) if args.model[0:2]=='VA': # VA trans = LSTM(args.nhid,recurrent_activation='sigmoid',return_sequences=True,implementation=2,recurrent_initializer=init)(X) trans = Dropout(0.5)(trans) trans = TimeDistributed(Dense(3,kernel_initializer='zeros'))(trans) rot = LSTM(args.nhid,recurrent_activation='sigmoid',return_sequences=True,implementation=2,recurrent_initializer=init)(X) rot = Dropout(0.5)(rot) rot = TimeDistributed(Dense(3,kernel_initializer='zeros'))(rot) transform = Concatenate()([rot,trans]) X = VA()([mask,transform]) X = LSTM(args.nhid,recurrent_activation='sigmoid',return_sequences=True,implementation=2,recurrent_initializer=init)(X) X = Dropout(0.5)(X) X = LSTM(args.nhid,recurrent_activation='sigmoid',return_sequences=True,implementation=2,recurrent_initializer=init)(X) X = Dropout(0.5)(X) X = LSTM(args.nhid,recurrent_activation='sigmoid',return_sequences=True,implementation=2,recurrent_initializer=init)(X) X = Dropout(0.5)(X) X = TimeDistributed(Dense(num_class))(X) X = MeanOverTime()(X) X = Activation('softmax')(X) model=Model(sequence_input,X) return model
开发者ID:microsoft,项目名称:View-Adaptive-Neural-Networks-for-Skeleton-based-Human-Action-Recognition,代码行数:33,代码来源:va-rnn.py
示例10: create_model# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Masking [as 别名]def create_model(self): model = Sequential() #model.add(Masking(mask_value=0, input_shape=(1, self.settings.getint("LSTM", "max_vector_length")))) model.add(LSTM_CELL(self.settings.getint("LSTM", "hidden_layers"), input_shape=(self.settings.getint("LSTM", "time_series"), self.settings.getint("LSTM", "max_vector_length")), return_sequences=True)) model.add(LSTM_CELL(self.settings.getint("LSTM", "hidden_layers"))) model.add(Dropout(self.settings.getfloat("LSTM", "dropout"))) model.add(Dense(self.settings.getint('LSTM', 'max_vector_length'))) return model
开发者ID:morrigan,项目名称:user-behavior-anomaly-detector,代码行数:13,代码来源:lstm.py
示例11: learn_model# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Masking [as 别名]def learn_model(self, features, labels, degrade_mask, epochs=30, batch_size=None, model=None): print('learning model') if True or not model and not self.model: model = Sequential() masking = Masking(mask_value=0.0, input_shape=(features.shape[1], features.shape[2],)) model.add(masking) crf = CRF(#input_shape=(features.shape[1], features.shape[2],), units=labels.shape[-1], sparse_target=False, kernel_regularizer=keras.regularizers.l1_l2(0.0001, 0.0001), #bias_regularizer=keras.regularizers.l2(0.005), #chain_regularizer=keras.regularizers.l2(0.005), #boundary_regularizer=keras.regularizers.l2(0.005), learn_mode='marginal', test_mode='marginal', unroll=self.unroll_flag, ) model.add(crf) model.compile(optimizer=self.opt, loss=crf_loss, #loss=crf.loss_function, metrics=[crf_accuracy], #metrics=[crf.accuracy], ) elif self.model: model = self.model else: assert model #assert features.shape[0] == len(self.degrade_mask) #weights = self._weight_logic(features, degrade_mask) model.fit(features, labels, epochs=epochs, batch_size=batch_size, verbose=1, #sample_weight=weights, ) return model
示例12: assemble_rnn# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Masking [as 别名]def assemble_rnn(params, final_reshape=True): """Construct an RNN/LSTM/GRU model of the form: X-[H1-H2-...-HN]-Y. All the H-layers are optional recurrent layers and depend on whether they are specified in the params dictionary. """ # Input layer input_shape = params['input_shape'] inputs = layers.Input(shape=input_shape) # inputs = layers.Input(batch_shape=[20] + list(input_shape)) # Masking layer previous = layers.Masking(mask_value=0.0)(inputs) # Hidden layers for layer in params['hidden_layers']: Layer = layers.deserialize( {'class_name': layer['name'], 'config': layer['config']}) previous = Layer(previous) if 'dropout' in layer and layer['dropout'] is not None: previous = layers.Dropout(layer['dropout'])(previous) if 'batch_norm' in layer and layer['batch_norm'] is not None: previous = layers.BatchNormalization(**layer['batch_norm'])(previous) # Output layer output_shape = params['output_shape'] output_dim = np.prod(output_shape) outputs = layers.Dense(output_dim)(previous) if final_reshape: outputs = layers.Reshape(output_shape)(outputs) return KerasModel(inputs=inputs, outputs=outputs)
开发者ID:alshedivat,项目名称:keras-gp,代码行数:34,代码来源:assemble.py
示例13: test_merge_mask_2d# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Masking [as 别名]def test_merge_mask_2d(): rand = lambda *shape: np.asarray(np.random.random(shape) > 0.5, dtype='int32') # inputs input_a = layers.Input(shape=(3,)) input_b = layers.Input(shape=(3,)) # masks masked_a = layers.Masking(mask_value=0)(input_a) masked_b = layers.Masking(mask_value=0)(input_b) # three different types of merging merged_sum = legacy_layers.merge([masked_a, masked_b], mode='sum') merged_concat = legacy_layers.merge([masked_a, masked_b], mode='concat', concat_axis=1) merged_concat_mixed = legacy_layers.merge([masked_a, input_b], mode='concat', concat_axis=1) # test sum model_sum = models.Model([input_a, input_b], [merged_sum]) model_sum.compile(loss='mse', optimizer='sgd') model_sum.fit([rand(2, 3), rand(2, 3)], [rand(2, 3)], epochs=1) # test concatenation model_concat = models.Model([input_a, input_b], [merged_concat]) model_concat.compile(loss='mse', optimizer='sgd') model_concat.fit([rand(2, 3), rand(2, 3)], [rand(2, 6)], epochs=1) # test concatenation with masked and non-masked inputs model_concat = models.Model([input_a, input_b], [merged_concat_mixed]) model_concat.compile(loss='mse', optimizer='sgd') model_concat.fit([rand(2, 3), rand(2, 3)], [rand(2, 6)], epochs=1)
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:32,代码来源:layers_test.py
示例14: test_masking# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Masking [as 别名]def test_masking(): layer_test(layers.Masking, kwargs={}, input_shape=(3, 2, 3))
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:6,代码来源:core_test.py
示例15: test_masking# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Masking [as 别名]def test_masking(): np.random.seed(1337) x = np.array([[[1], [1]], [[0], [0]]]) model = Sequential() model.add(Masking(mask_value=0, input_shape=(2, 1))) model.add(TimeDistributed(Dense(1, kernel_initializer='one'))) model.compile(loss='mse', optimizer='sgd') y = np.array([[[1], [1]], [[1], [1]]]) loss = model.train_on_batch(x, y) assert loss == 0
|