您当前的位置:首页 > IT编程 > Keras
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Python layers.SpatialDropout1D方法代码示例

51自学网 2020-12-01 11:09:04
  Keras
这篇教程Python layers.SpatialDropout1D方法代码示例写得很实用,希望能帮到您。

本文整理汇总了Python中keras.layers.SpatialDropout1D方法的典型用法代码示例。如果您正苦于以下问题:Python layers.SpatialDropout1D方法的具体用法?Python layers.SpatialDropout1D怎么用?Python layers.SpatialDropout1D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.layers的用法示例。

在下文中一共展示了layers.SpatialDropout1D方法的22个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: CapsuleNet

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SpatialDropout1D [as 别名]def CapsuleNet(n_capsule = 10, n_routings = 5, capsule_dim = 16,     n_recurrent=100, dropout_rate=0.2, l2_penalty=0.0001):    K.clear_session()    inputs = Input(shape=(170,))    x = Embedding(21099, 300,  trainable=True)(inputs)            x = SpatialDropout1D(dropout_rate)(x)    x = Bidirectional(        CuDNNGRU(n_recurrent, return_sequences=True,                 kernel_regularizer=l2(l2_penalty),                 recurrent_regularizer=l2(l2_penalty)))(x)    x = PReLU()(x)    x = Capsule(        num_capsule=n_capsule, dim_capsule=capsule_dim,        routings=n_routings, share_weights=True)(x)    x = Flatten(name = 'concatenate')(x)    x = Dropout(dropout_rate)(x)#     fc = Dense(128, activation='sigmoid')(x)    outputs = Dense(6, activation='softmax')(x)    model = Model(inputs=inputs, outputs=outputs)    model.compile(loss='categorical_crossentropy', optimizer='nadam', metrics=['accuracy'])    return model 
开发者ID:WeavingWong,项目名称:DigiX_HuaWei_Population_Age_Attribution_Predict,代码行数:24,代码来源:models.py


示例2: CapsuleNet_v2

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SpatialDropout1D [as 别名]def CapsuleNet_v2(n_capsule = 10, n_routings = 5, capsule_dim = 16,     n_recurrent=100, dropout_rate=0.2, l2_penalty=0.0001):    K.clear_session()    inputs = Input(shape=(200,))    x = Embedding(20000, 300,  trainable=True)(inputs)            x = SpatialDropout1D(dropout_rate)(x)    x = Bidirectional(        CuDNNGRU(n_recurrent, return_sequences=True,                 kernel_regularizer=l2(l2_penalty),                 recurrent_regularizer=l2(l2_penalty)))(x)    x = PReLU()(x)    x = Capsule(        num_capsule=n_capsule, dim_capsule=capsule_dim,        routings=n_routings, share_weights=True)(x)    x = Flatten(name = 'concatenate')(x)    x = Dropout(dropout_rate)(x)#     fc = Dense(128, activation='sigmoid')(x)    outputs = Dense(6, activation='softmax')(x)    model = Model(inputs=inputs, outputs=outputs)    model.compile(loss='categorical_crossentropy', optimizer='nadam', metrics=['accuracy'])    return model 
开发者ID:WeavingWong,项目名称:DigiX_HuaWei_Population_Age_Attribution_Predict,代码行数:24,代码来源:models.py


示例3: create_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SpatialDropout1D [as 别名]def create_model(self, hyper_parameters):        """            构建神经网络        :param hyper_parameters:json,  hyper parameters of network        :return: tensor, moedl        """        super().create_model(hyper_parameters)        x = self.word_embedding.output        x = SpatialDropout1D(self.dropout_spatial)(x)        x = AttentionSelf(self.word_embedding.embed_size)(x)        x = GlobalMaxPooling1D()(x)        x = Dropout(self.dropout)(x)        # x = Flatten()(x)        # 最后就是softmax        dense_layer = Dense(self.label, activation=self.activate_classify)(x)        output = [dense_layer]        self.model = Model(self.word_embedding.input, output)        self.model.summary(120) 
开发者ID:yongzhuo,项目名称:Keras-TextClassification,代码行数:20,代码来源:graph.py


示例4: build_model_text_cnn

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SpatialDropout1D [as 别名]def build_model_text_cnn(self):        #########    text-cnn    #########        # bert embedding        bert_inputs, bert_output = KerasBertEmbedding().bert_encode()        # text cnn        bert_output_emmbed = SpatialDropout1D(rate=self.keep_prob)(bert_output)        concat_out = []        for index, filter_size in enumerate(self.filters):            x = Conv1D(name='TextCNN_Conv1D_{}'.format(index), filters=int(self.embedding_dim/2), kernel_size=self.filters[index], padding='valid', kernel_initializer='normal', activation='relu')(bert_output_emmbed)            x = GlobalMaxPooling1D(name='TextCNN_MaxPool1D_{}'.format(index))(x)            concat_out.append(x)        x = Concatenate(axis=1)(concat_out)        x = Dropout(self.keep_prob)(x)        # 最后就是softmax        dense_layer = Dense(self.label, activation=self.activation)(x)        output_layers = [dense_layer]        self.model = Model(bert_inputs, output_layers) 
开发者ID:yongzhuo,项目名称:nlp_xiaojiang,代码行数:20,代码来源:keras_bert_classify_text_cnn.py


示例5: keras_dropout

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SpatialDropout1D [as 别名]def keras_dropout(layer, rate):    """    Keras dropout layer.    """    from keras import layers    input_dim = len(layer.input.shape)    if input_dim == 2:        return layers.SpatialDropout1D(rate)    elif input_dim == 3:        return layers.SpatialDropout2D(rate)    elif input_dim == 4:        return layers.SpatialDropout3D(rate)    else:        return layers.Dropout(rate) 
开发者ID:microsoft,项目名称:nni,代码行数:18,代码来源:layers.py


示例6: Token_Embedding

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SpatialDropout1D [as 别名]def Token_Embedding(x, input_dim, output_dim, embed_weights=None,                    mask_zero=False, input_length=None, dropout_rate=0,                    embed_l2=1E-6, name='', time_distributed=False, **kwargs):    """    Basic token embedding layer, also included some dropout layer.    """    embed_reg = L1L2(l2=embed_l2) if embed_l2 != 0 else None    embed_layer = Embedding(input_dim=input_dim,                            output_dim=output_dim,                            weights=embed_weights,                            mask_zero=mask_zero,                            input_length=input_length,                            embeddings_regularizer=embed_reg,                            name=name)    if time_distributed:        embed = TimeDistributed(embed_layer)(x)    else:        embed = embed_layer(x)    # entire embedding channels are dropped out instead of the    # normal Keras embedding dropout, which drops all channels for entire words    # many of the datasets contain so few words that losing one or more words can alter the emotions completely    if dropout_rate != 0:        embed = SpatialDropout1D(dropout_rate)(embed)    return embed 
开发者ID:stevewyl,项目名称:nlp_toolkit,代码行数:26,代码来源:embedding.py


示例7: dummy_1_build_fn

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SpatialDropout1D [as 别名]def dummy_1_build_fn(input_shape=(1,)):    model = Sequential(        [            Embedding(input_dim=9999, output_dim=200, input_length=100, trainable=True),            SpatialDropout1D(rate=0.5),            Flatten(),            Dense(100, activation="relu"),            Dense(1, activation="sigmoid"),        ]    )    model.compile(        optimizer=RMSprop(lr=0.02, decay=0.001),        loss=mean_absolute_error,        metrics=["mean_absolute_error"],    )    return model 
开发者ID:HunterMcGushion,项目名称:hyperparameter_hunter,代码行数:18,代码来源:test_keras_helper.py


示例8: create_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SpatialDropout1D [as 别名]def create_model(self, hyper_parameters):        """            构建神经网络        :param hyper_parameters:json,  hyper parameters of network        :return: tensor, moedl        """        super().create_model(hyper_parameters)        embedding_output = self.word_embedding.output        x = Lambda(lambda x : x[:, 0:1, :])(embedding_output) # 获取CLS        # # text cnn        # bert_output_emmbed = SpatialDropout1D(rate=self.dropout)(embedding_output)        # concat_out = []        # for index, filter_size in enumerate(self.filters):        #     x = Conv1D(name='TextCNN_Conv1D_{}'.format(index),        #                filters= self.filters_num, # int(K.int_shape(embedding_output)[-1]/self.len_max),        #                strides=1,        #                kernel_size=self.filters[index],        #                padding='valid',        #                kernel_initializer='normal',        #                activation='relu')(bert_output_emmbed)        #     x = GlobalMaxPooling1D(name='TextCNN_MaxPool1D_{}'.format(index))(x)        #     concat_out.append(x)        # x = Concatenate(axis=1)(concat_out)        # x = Dropout(self.dropout)(x)        x = Flatten()(x)        # 最后就是softmax        dense_layer = Dense(self.label, activation=self.activate_classify)(x)        output_layers = [dense_layer]        self.model = Model(self.word_embedding.input, output_layers)        self.model.summary(120) 
开发者ID:yongzhuo,项目名称:Keras-TextClassification,代码行数:32,代码来源:graph.py


示例9: word_level

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SpatialDropout1D [as 别名]def word_level(self):        x_input_word = Input(shape=(self.len_max, self.embed_size))        # x = SpatialDropout1D(self.dropout_spatial)(x_input_word)        x = Bidirectional(GRU(units=self.rnn_units,                              return_sequences=True,                              activation='relu',                              kernel_regularizer=regularizers.l2(self.l2),                              recurrent_regularizer=regularizers.l2(self.l2)))(x_input_word)        out_sent = AttentionSelf(self.rnn_units*2)(x)        model = Model(x_input_word, out_sent)        return model 
开发者ID:yongzhuo,项目名称:Keras-TextClassification,代码行数:13,代码来源:graph.py


示例10: sentence_level

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SpatialDropout1D [as 别名]def sentence_level(self):        x_input_sen = Input(shape=(self.len_max, self.rnn_units*2))        # x = SpatialDropout1D(self.dropout_spatial)(x_input_sen)        output_doc = Bidirectional(GRU(units=self.rnn_units*2,                              return_sequences=True,                              activation='relu',                              kernel_regularizer=regularizers.l2(self.l2),                              recurrent_regularizer=regularizers.l2(self.l2)))(x_input_sen)        output_doc_att = AttentionSelf(self.word_embedding.embed_size)(output_doc)        model = Model(x_input_sen, output_doc_att)        return model 
开发者ID:yongzhuo,项目名称:Keras-TextClassification,代码行数:13,代码来源:graph.py


示例11: create_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SpatialDropout1D [as 别名]def create_model(self, hyper_parameters):        """            构建神经网络        :param hyper_parameters:json,  hyper parameters of network        :return: tensor, moedl        """        super().create_model(hyper_parameters)        embedding_output = self.word_embedding.output        embedding_output_spatial = SpatialDropout1D(self.dropout_spatial)(embedding_output)        # 首先是 region embedding 层        conv_1 = Conv1D(self.filters[0][0],                        kernel_size=1,                        strides=1,                        padding='SAME',                        kernel_regularizer=l2(self.l2),                        bias_regularizer=l2(self.l2),                        activation=self.activation_conv,                        )(embedding_output_spatial)        block = ReLU()(conv_1)        for filters_block in self.filters:            for j in range(filters_block[1]-1):                # conv + short-cut                block_mid = self.convolutional_block(block, units=filters_block[0])                block = shortcut_conv(block, block_mid, shortcut=True)            # 这里是conv + max-pooling            block_mid = self.convolutional_block(block, units=filters_block[0])            block = shortcut_pool(block, block_mid, filters=filters_block[0], pool_type=self.pool_type, shortcut=True)        block = k_max_pooling(top_k=self.top_k)(block)        block = Flatten()(block)        block = Dropout(self.dropout)(block)        # 全连接层        # block_fully = Dense(2048, activation='tanh')(block)        # output = Dense(2048, activation='tanh')(block_fully)        output = Dense(self.label, activation=self.activate_classify)(block)        self.model = Model(inputs=self.word_embedding.input, outputs=output)        self.model.summary(120) 
开发者ID:yongzhuo,项目名称:Keras-TextClassification,代码行数:41,代码来源:graph.py


示例12: create_model_gru

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SpatialDropout1D [as 别名]def create_model_gru(self, hyper_parameters):        """            构建神经网络, bi-gru + capsule        :param hyper_parameters:json,  hyper parameters of network        :return: tensor, moedl        """        super().create_model(hyper_parameters)        embedding = self.word_embedding.output        embed_layer = SpatialDropout1D(self.dropout)(embedding)        x_bi = Bidirectional(GRU(self.filters_num,                              activation='relu',                              dropout=self.dropout,                              recurrent_dropout=self.dropout,                              return_sequences=True))(embed_layer)        # 一层        capsule = Capsule_bojone(num_capsule=self.num_capsule,                              dim_capsule=self.dim_capsule,                              routings=self.routings,                              kernel_size=(3, 1),                              share_weights=True)(x_bi)        # # pooling多层        # conv_pools = []        # for filter in self.filters:        #     capsule = Capsule_bojone(num_capsule=self.num_capsule,        #                              dim_capsule=self.dim_capsule,        #                              routings=self.routings,        #                              kernel_size=(filter, 1),        #                              share_weights=True)(x_bi)        #     conv_pools.append(capsule)        # capsule = Concatenate(axis=-1)(conv_pools)        capsule = Flatten()(capsule)        capsule = Dropout(self.dropout)(capsule)        output = Dense(self.label, activation=self.activate_classify)(capsule)        self.model = Model(inputs=self.word_embedding.input, outputs=output)        self.model.summary(120) 
开发者ID:yongzhuo,项目名称:Keras-TextClassification,代码行数:39,代码来源:graph.py


示例13: create_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SpatialDropout1D [as 别名]def create_model(self, hyper_parameters):        """            构建神经网络        :param hyper_parameters:json,  hyper parameters of network        :return: tensor, moedl        """        super().create_model(hyper_parameters)        embedding_output = self.word_embedding.output        # x = embedding_output        x = Lambda(lambda x : x[:, -2:-1, :])(embedding_output) # 获取CLS        # # text cnn        # bert_output_emmbed = SpatialDropout1D(rate=self.dropout)(embedding_output)        # concat_out = []        # for index, filter_size in enumerate(self.filters):        #     x = Conv1D(name='TextCNN_Conv1D_{}'.format(index),        #                filters= self.filters_num, # int(K.int_shape(embedding_output)[-1]/self.len_max),        #                strides=1,        #                kernel_size=self.filters[index],        #                padding='valid',        #                kernel_initializer='normal',        #                activation='relu')(bert_output_emmbed)        #     x = GlobalMaxPooling1D(name='TextCNN_MaxPool1D_{}'.format(index))(x)        #     concat_out.append(x)        # x = Concatenate(axis=1)(concat_out)        # x = Dropout(self.dropout)(x)        x = Flatten()(x)        # 最后就是softmax        dense_layer = Dense(self.label, activation=self.activate_classify)(x)        output_layers = [dense_layer]        self.model = Model(self.word_embedding.input, output_layers)        self.model.summary(120) 
开发者ID:yongzhuo,项目名称:Keras-TextClassification,代码行数:33,代码来源:graph.py


示例14: create_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SpatialDropout1D [as 别名]def create_model(self, hyper_parameters):        """            构建神经网络        :param hyper_parameters:json,  hyper parameters of network        :return: tensor, moedl        """        super().create_model(hyper_parameters)        embedding_output = self.word_embedding.output        x = Lambda(lambda x : x[:, 0:1, :])(embedding_output) # 获取CLS        # # text cnn        # bert_output_emmbed = SpatialDropout1D(rate=self.dropout)(embedding_output)        # concat_out = []        # for index, filter_size in enumerate(self.filters):        #     x = Conv1D(name='TextCNN_Conv1D_{}'.format(index),        #                filters= self.filters_num, # int(K.int_shape(embedding_output)[-1]/self.len_max),        #                strides=1,        #                kernel_size=self.filters[index],        #                padding='valid',        #                kernel_initializer='normal',        #                activation='relu')(bert_output_emmbed)        #     x = GlobalMaxPooling1D(name='TextCNN_MaxPool1D_{}'.format(index))(x)        #     concat_out.append(x)        # x = Concatenate(axis=1)(concat_out)        # x = Dropout(self.dropout)(x)        x = Flatten()(x)        # 最后就是softmax        dense_layer = Dense(self.label, activation=self.activate_classify)(x)        output_layers = [dense_layer]        self.model = Model(self.word_embedding.input, output_layers)        self.model.summary(132) 
开发者ID:yongzhuo,项目名称:Keras-TextClassification,代码行数:32,代码来源:graph.py


示例15: test_dropout

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SpatialDropout1D [as 别名]def test_dropout():    layer_test(layers.Dropout,               kwargs={'rate': 0.5},               input_shape=(3, 2))    layer_test(layers.Dropout,               kwargs={'rate': 0.5, 'noise_shape': [3, 1]},               input_shape=(3, 2))    layer_test(layers.Dropout,               kwargs={'rate': 0.5, 'noise_shape': [None, 1]},               input_shape=(3, 2))    layer_test(layers.SpatialDropout1D,               kwargs={'rate': 0.5},               input_shape=(2, 3, 4))    for data_format in ['channels_last', 'channels_first']:        for shape in [(4, 5), (4, 5, 6)]:            if data_format == 'channels_last':                input_shape = (2,) + shape + (3,)            else:                input_shape = (2, 3) + shape            layer_test(layers.SpatialDropout2D if len(shape) == 2 else layers.SpatialDropout3D,                       kwargs={'rate': 0.5,                               'data_format': data_format},                       input_shape=input_shape)            # Test invalid use cases            with pytest.raises(ValueError):                layer_test(layers.SpatialDropout2D if len(shape) == 2 else layers.SpatialDropout3D,                           kwargs={'rate': 0.5,                                   'data_format': 'channels_middle'},                           input_shape=input_shape) 
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:36,代码来源:core_test.py


示例16: build_model_r_cnn

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SpatialDropout1D [as 别名]def build_model_r_cnn(self):        #########    RCNN    #########        # bert embedding        bert_inputs, bert_output = KerasBertEmbedding().bert_encode()        # rcnn        bert_output_emmbed = SpatialDropout1D(rate=self.keep_prob)(bert_output)        if args.use_lstm:            if args.use_cudnn_cell:                layer_cell = CuDNNLSTM            else:                layer_cell = LSTM        else:            if args.use_cudnn_cell:                layer_cell = CuDNNGRU            else:                layer_cell = GRU        x = Bidirectional(layer_cell(units=args.units, return_sequences=args.return_sequences,                                     kernel_regularizer=regularizers.l2(args.l2 * 0.1),                                     recurrent_regularizer=regularizers.l2(args.l2)                                     ))(bert_output_emmbed)        x = Dropout(args.keep_prob)(x)        x = Conv1D(filters=int(self.embedding_dim / 2), kernel_size=2, padding='valid', kernel_initializer='normal', activation='relu')(x)        x = GlobalMaxPooling1D()(x)        x = Dropout(args.keep_prob)(x)        # 最后就是softmax        dense_layer = Dense(self.label, activation=self.activation)(x)        output_layers = [dense_layer]        self.model = Model(bert_inputs, output_layers) 
开发者ID:yongzhuo,项目名称:nlp_xiaojiang,代码行数:31,代码来源:keras_bert_classify_text_cnn.py


示例17: build_model_avt_cnn

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SpatialDropout1D [as 别名]def build_model_avt_cnn(self):        #########text-cnn#########        # bert embedding        bert_inputs, bert_output = KerasBertEmbedding().bert_encode()        # text cnn        bert_output_emmbed = SpatialDropout1D(rate=self.keep_prob)(bert_output)        concat_x = []        concat_y = []        concat_z = []        for index, filter_size in enumerate(self.filters):            conv = Conv1D(name='TextCNN_Conv1D_{}'.format(index), filters=int(self.embedding_dim/2), kernel_size=self.filters[index], padding='valid', kernel_initializer='normal', activation='relu')(bert_output_emmbed)            x = GlobalMaxPooling1D(name='TextCNN_MaxPooling1D_{}'.format(index))(conv)            y = GlobalAveragePooling1D(name='TextCNN_AveragePooling1D_{}'.format(index))(conv)            z = AttentionWeightedAverage(name='TextCNN_Annention_{}'.format(index))(conv)            concat_x.append(x)            concat_y.append(y)            concat_z.append(z)        merge_x = Concatenate(axis=1)(concat_x)        merge_y = Concatenate(axis=1)(concat_y)        merge_z = Concatenate(axis=1)(concat_z)        merge_xyz = Concatenate(axis=1)([merge_x, merge_y, merge_z])        x = Dropout(self.keep_prob)(merge_xyz)        # 最后就是softmax        dense_layer = Dense(self.label, activation=self.activation)(x)        output_layers = [dense_layer]        self.model = Model(bert_inputs, output_layers) 
开发者ID:yongzhuo,项目名称:nlp_xiaojiang,代码行数:30,代码来源:keras_bert_classify_text_cnn.py


示例18: _get_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SpatialDropout1D [as 别名]def _get_model(self):        d = 0.5        rd = 0.5        rnn_units = 128        input_text = Input((self.input_length,))        text_embedding = Embedding(input_dim=self.max_words + 2, output_dim=self.emb_dim,                                   input_length=self.input_length, mask_zero=True)(input_text)        text_embedding = SpatialDropout1D(0.5)(text_embedding)        bilstm = Bidirectional(LSTM(units=rnn_units, return_sequences=True, dropout=d,                                    recurrent_dropout=rd))(text_embedding)        x, attn = AttentionWeightedAverage(return_attention=True)(bilstm)        x = Dropout(0.5)(x)        out = Dense(units=self.n_classes, activation="softmax")(x)        model = Model(input_text, out)        return model 
开发者ID:tsterbak,项目名称:keras_attention,代码行数:17,代码来源:models.py


示例19: conv_bn_relu_spadrop

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SpatialDropout1D [as 别名]def conv_bn_relu_spadrop(X, **conv_params):		dropout_rate = conv_params.setdefault("dropout_rate", 0.5)	A = conv_bn_relu(X, **conv_params)	return SpatialDropout1D(dropout_rate)(A)#----------------------------------------------------------------------- 
开发者ID:charlotte-pel,项目名称:temporalCNN,代码行数:8,代码来源:architecture_features.py


示例20: conv2d_bn_relu_spadrop

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SpatialDropout1D [as 别名]def conv2d_bn_relu_spadrop(X, **conv_params):		dropout_rate = conv_params.setdefault("dropout_rate", 0.5)	A = conv2d_bn_relu(X, **conv_params)	return SpatialDropout1D(dropout_rate)(A)	#----------------------------------------------------------------------- 
开发者ID:charlotte-pel,项目名称:temporalCNN,代码行数:9,代码来源:architecture_features.py


示例21: create_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SpatialDropout1D [as 别名]def create_model(self):        embedding_size = 100        self.model = Sequential()        self.model.add(Embedding(input_dim=self.vocab_size, output_dim=embedding_size, input_length=self.max_len))        self.model.add(SpatialDropout1D(0.2))        self.model.add(LSTM(units=64, dropout=0.2, recurrent_dropout=0.2))        self.model.add(Dense(1, activation='sigmoid'))        self.model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy']) 
开发者ID:chen0040,项目名称:keras-english-resume-parser-and-analyzer,代码行数:11,代码来源:lstm.py


示例22: create_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SpatialDropout1D [as 别名]def create_model(self):        embedding_size = 100        self.model = Sequential()        self.model.add(Embedding(input_dim=self.vocab_size, input_length=self.max_len, output_dim=embedding_size))        self.model.add(SpatialDropout1D(0.2))        self.model.add(Conv1D(filters=256, kernel_size=5, padding='same', activation='relu'))        self.model.add(GlobalMaxPool1D())        self.model.add(Dense(units=len(self.labels), activation='softmax'))        self.model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) 
开发者ID:chen0040,项目名称:keras-english-resume-parser-and-analyzer,代码行数:12,代码来源:cnn.py


万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。