您当前的位置:首页 > IT编程 > Keras
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Python layers.SeparableConv2D方法代码示例

51自学网 2020-12-01 11:09:04
  Keras
这篇教程Python layers.SeparableConv2D方法代码示例写得很实用,希望能帮到您。

本文整理汇总了Python中keras.layers.SeparableConv2D方法的典型用法代码示例。如果您正苦于以下问题:Python layers.SeparableConv2D方法的具体用法?Python layers.SeparableConv2D怎么用?Python layers.SeparableConv2D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.layers的用法示例。

在下文中一共展示了layers.SeparableConv2D方法的18个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: classifier_layers

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SeparableConv2D [as 别名]def classifier_layers(x, input_shape, trainable=False):    # compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround    # (hence a smaller stride in the region that follows the ROI pool)    x = TimeDistributed(SeparableConv2D(1536, (3, 3),                                        padding='same',                                        use_bias=False),                        name='block14_sepconv1')(x)    x = TimeDistributed(BatchNormalization(), name='block14_sepconv1_bn')(x)    x = Activation('relu', name='block14_sepconv1_act')(x)    x = TimeDistributed(SeparableConv2D(2048, (3, 3),                                        padding='same',                                        use_bias=False),                        name='block14_sepconv2')(x)    x = TimeDistributed(BatchNormalization(), name='block14_sepconv2_bn')(x)    x = Activation('relu', name='block14_sepconv2_act')(x)    TimeDistributed(GlobalAveragePooling2D(), name='avg_pool')(x)    return x 
开发者ID:you359,项目名称:Keras-FasterRCNN,代码行数:23,代码来源:xception.py


示例2: lin_interpolation_2d

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SeparableConv2D [as 别名]def lin_interpolation_2d(inp, dim):    num_rows, num_cols, num_filters = K.int_shape(inp)[1:]    conv = SeparableConv2D(num_filters, (num_rows, num_cols), use_bias=False)    x = conv(inp)    w = conv.get_weights()    w[0].fill(0)    w[1].fill(0)    linspace = linspace_2d(num_rows, num_cols, dim=dim)    for i in range(num_filters):        w[0][:,:, i, 0] = linspace[:,:]        w[1][0, 0, i, i] = 1.    conv.set_weights(w)    conv.trainable = False    x = Lambda(lambda x: K.squeeze(x, axis=1))(x)    x = Lambda(lambda x: K.squeeze(x, axis=1))(x)    x = Lambda(lambda x: K.expand_dims(x, axis=-1))(x)    return x 
开发者ID:dluvizon,项目名称:pose-regression,代码行数:25,代码来源:layers.py


示例3: test_tiny_separable_conv_valid_depth_multiplier

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SeparableConv2D [as 别名]def test_tiny_separable_conv_valid_depth_multiplier(self):      np.random.seed(1988)      input_dim = 16      input_shape = (input_dim, input_dim, 3)      depth_multiplier = 5      kernel_height = 3      kernel_width = 3      num_kernels = 40      # Define a model      model = Sequential()      model.add(SeparableConv2D(filters=num_kernels, kernel_size=(kernel_height, kernel_width),                                padding='valid', strides=(1, 1), depth_multiplier=depth_multiplier,                                input_shape=input_shape))      # Set some random weights      model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])      # Test the keras model      self._test_keras_model(model) 
开发者ID:tf-coreml,项目名称:tf-coreml,代码行数:19,代码来源:test_tf_keras_layers.py


示例4: test_tiny_separable_conv_same_fancy_depth_multiplier

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SeparableConv2D [as 别名]def test_tiny_separable_conv_same_fancy_depth_multiplier(self):      np.random.seed(1988)      input_dim = 16      input_shape = (input_dim, input_dim, 3)      depth_multiplier = 2      kernel_height = 3      kernel_width = 3      num_kernels = 40      # Define a model      model = Sequential()      model.add(SeparableConv2D(filters=num_kernels, kernel_size=(kernel_height, kernel_width),                                padding='same', strides=(2, 2), activation='relu', depth_multiplier=depth_multiplier,                                input_shape=input_shape))      # Set some random weights      model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])      # Test the keras model      self._test_keras_model(model) 
开发者ID:tf-coreml,项目名称:tf-coreml,代码行数:19,代码来源:test_tf_keras_layers.py


示例5: _convBlock

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SeparableConv2D [as 别名]def _convBlock(self, x, num_filters, activation, kernel_size=(3,3)):        x = SeparableConv2D(num_filters,kernel_size,padding='same')(x)        x = BatchNormalization(axis=-1)(x)        x = Activation(activation)(x)        return x 
开发者ID:shamangary,项目名称:FSA-Net,代码行数:7,代码来源:FSANET_model.py


示例6: _separable_conv_block

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SeparableConv2D [as 别名]def _separable_conv_block(ip, filters, kernel_size=(3, 3), strides=(1, 1), weight_decay=5e-5, id=None, weights=None):    '''Adds 2 blocks of [relu-separable conv-batchnorm]    # Arguments:        ip: input tensor        filters: number of output filters per layer        kernel_size: kernel size of separable convolutions        strides: strided convolution for downsampling        weight_decay: l2 regularization weight        id: string id    # Returns:        a Keras tensor    '''    channel_dim = 1 if K.image_data_format() == 'channels_first' else -1    with K.name_scope('separable_conv_block_%s' % id):        x = Activation('relu')(ip)        x = SeparableConv2D(filters, kernel_size, strides=strides, name='separable_conv_1_%s' % id,                            padding='same', use_bias=False, kernel_initializer='he_normal',                            kernel_regularizer=l2(weight_decay),                            weights=[weights['d1'], weights['p1']])(x)        x = BatchNormalization(axis=channel_dim, momentum=_BN_DECAY, epsilon=_BN_EPSILON,                               name="separable_conv_1_bn_%s" % (id),                               weights=weights['bn1'])(x)        x = Activation('relu')(x)        x = SeparableConv2D(filters, kernel_size, name='separable_conv_2_%s' % id,                            padding='same', use_bias=False, kernel_initializer='he_normal',                            kernel_regularizer=l2(weight_decay),                            weights=[weights['d2'], weights['p2']])(x)        x = BatchNormalization(axis=channel_dim, momentum=_BN_DECAY, epsilon=_BN_EPSILON,                               name="separable_conv_2_bn_%s" % (id),                               weights=weights['bn2'])(x)    return x 
开发者ID:titu1994,项目名称:Keras-NASNet,代码行数:36,代码来源:nasnet.py


示例7: _separable_conv_block

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SeparableConv2D [as 别名]def _separable_conv_block(ip, filters, kernel_size=(3, 3), strides=(1, 1), weight_decay=5e-5, id=None):    '''Adds 2 blocks of [relu-separable conv-batchnorm]    # Arguments:        ip: input tensor        filters: number of output filters per layer        kernel_size: kernel size of separable convolutions        strides: strided convolution for downsampling        weight_decay: l2 regularization weight        id: string id    # Returns:        a Keras tensor    '''    channel_dim = 1 if K.image_data_format() == 'channels_first' else -1    with K.name_scope('separable_conv_block_%s' % id):        x = Activation('relu')(ip)        x = SeparableConv2D(filters, kernel_size, strides=strides, name='separable_conv_1_%s' % id,                            padding='same', use_bias=False, kernel_initializer='he_normal',                            kernel_regularizer=l2(weight_decay))(x)        x = BatchNormalization(axis=channel_dim, momentum=_BN_DECAY, epsilon=_BN_EPSILON,                               name="separable_conv_1_bn_%s" % (id))(x)        x = Activation('relu')(x)        x = SeparableConv2D(filters, kernel_size, name='separable_conv_2_%s' % id,                            padding='same', use_bias=False, kernel_initializer='he_normal',                            kernel_regularizer=l2(weight_decay))(x)        x = BatchNormalization(axis=channel_dim, momentum=_BN_DECAY, epsilon=_BN_EPSILON,                               name="separable_conv_2_bn_%s" % (id))(x)    return x 
开发者ID:titu1994,项目名称:Keras-NASNet,代码行数:32,代码来源:nasnet.py


示例8: _separable_conv_block

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SeparableConv2D [as 别名]def _separable_conv_block(ip, filters, kernel_size=(3, 3), strides=(1, 1),                          weight_decay=5e-5, id=None):    '''Adds 2 blocks of [relu-separable conv-batchnorm]    # Arguments:        ip: input tensor        filters: number of output filters per layer        kernel_size: kernel size of separable convolutions        strides: strided convolution for downsampling        weight_decay: l2 regularization weight        id: string id    # Returns:        a Keras tensor    '''    channel_dim = 1 if K.image_data_format() == 'channels_first' else -1    with K.name_scope('separable_conv_block_%s' % id):        x = Activation('relu')(ip)        x = SeparableConv2D(filters, kernel_size, strides=strides,                            name='separable_conv_1_%s' % id, padding='same',                            use_bias=False, kernel_initializer='he_normal',                            kernel_regularizer=l2(weight_decay))(x)        x = BatchNormalization(axis=channel_dim, momentum=_BN_DECAY,                               epsilon=_BN_EPSILON,                               name="separable_conv_1_bn_%s" % id)(x)        x = Activation('relu')(x)        x = SeparableConv2D(filters, kernel_size, name='separable_conv_2_%s' % id,                            padding='same', use_bias=False,                            kernel_initializer='he_normal',                            kernel_regularizer=l2(weight_decay))(x)        x = BatchNormalization(axis=channel_dim, momentum=_BN_DECAY,                               epsilon=_BN_EPSILON,                               name="separable_conv_2_bn_%s" % id)(x)    return x 
开发者ID:keras-team,项目名称:keras-contrib,代码行数:37,代码来源:nasnet.py


示例9: conv_sep

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SeparableConv2D [as 别名]def conv_sep(self, input_tensor, filters, kernel_size=5, strides=2, **kwargs):        """ Seperable Convolution Layer.        Parameters        ----------        input_tensor: tensor            The input tensor to the layer        filters: int            The dimensionality of the output space (i.e. the number of output filters in the            convolution)        kernel_size: int, optional            An integer or tuple/list of 2 integers, specifying the height and width of the 2D            convolution window. Can be a single integer to specify the same value for all spatial            dimensions. Default: 5        strides: tuple or int, optional            An integer or tuple/list of 2 integers, specifying the strides of the convolution along            the height and width. Can be a single integer to specify the same value for all spatial            dimensions. Default: `2`        kwargs: dict            Any additional Keras standard layer keyword arguments        Returns        -------        tensor            The output tensor from the Upscale layer        """        logger.debug("input_tensor: %s, filters: %s, kernel_size: %s, strides: %s, kwargs: %s)",                     input_tensor, filters, kernel_size, strides, kwargs)        name = self._get_name("separableconv2d_{}".format(input_tensor.shape[1]))        kwargs = self._set_default_initializer(kwargs)        var_x = SeparableConv2D(filters,                                kernel_size=kernel_size,                                strides=strides,                                padding="same",                                name="{}_seperableconv2d".format(name),                                **kwargs)(input_tensor)        var_x = Activation("relu", name="{}_relu".format(name))(var_x)        return var_x 
开发者ID:deepfakes,项目名称:faceswap,代码行数:40,代码来源:nn_blocks.py


示例10: separable_act_conv_bn

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SeparableConv2D [as 别名]def separable_act_conv_bn(x, filters, size, strides=(1, 1), padding='same',        name=None):    if name is not None:        conv_name = name + '_conv'        act_name = name + '_act'    else:        conv_name = None        act_name = None    x = Activation('relu', name=act_name)(x)    x = SeparableConv2D(filters, size, strides=strides, padding=padding,            use_bias=False, name=conv_name)(x)    x = BatchNormalization(axis=-1, scale=False, name=name)(x)    return x 
开发者ID:dluvizon,项目名称:pose-regression,代码行数:16,代码来源:layers.py


示例11: sepconv2d

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SeparableConv2D [as 别名]def sepconv2d(x, filters, kernel_size, strides=(1, 1), padding='same',        name=None):    """SeparableConv2D possibly wrapped by a TimeDistributed layer."""    f = SeparableConv2D(filters, kernel_size, strides=strides, padding=padding,            use_bias=False, name=name)    return TimeDistributed(f, name=name)(x) if K.ndim(x) == 5 else f(x) 
开发者ID:dluvizon,项目名称:deephar,代码行数:9,代码来源:layers.py


示例12: lin_interpolation_2d

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SeparableConv2D [as 别名]def lin_interpolation_2d(x, axis, vmin=0., vmax=1., name=None):    """Implements a 2D linear interpolation using a depth size separable    convolution (non trainable).    """    assert K.ndim(x) in [4, 5], /            'Input tensor must have ndim 4 or 5 ({})'.format(K.ndim(x))    if 'global_sam_cnt' not in globals():        global global_sam_cnt        global_sam_cnt = 0    if name is None:        name = 'custom_sam_%d' % global_sam_cnt        global_sam_cnt += 1    if K.ndim(x) == 4:        num_rows, num_cols, num_filters = K.int_shape(x)[1:]    else:        num_rows, num_cols, num_filters = K.int_shape(x)[2:]    f = SeparableConv2D(num_filters, (num_rows, num_cols), use_bias=False,            name=name)    x = TimeDistributed(f, name=name)(x) if K.ndim(x) == 5 else f(x)    w = f.get_weights()    w[0].fill(0)    w[1].fill(0)    linspace = linspace_2d(num_rows, num_cols, dim=axis)    for i in range(num_filters):        w[0][:,:, i, 0] = linspace[:,:]        w[1][0, 0, i, i] = 1.    f.set_weights(w)    f.trainable = False    x = Lambda(lambda x: K.squeeze(x, axis=-2))(x)    x = Lambda(lambda x: K.squeeze(x, axis=-2))(x)    x = Lambda(lambda x: K.expand_dims(x, axis=-1))(x)    return x 
开发者ID:dluvizon,项目名称:deephar,代码行数:43,代码来源:layers.py


示例13: separable_conv_bn_act

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SeparableConv2D [as 别名]def separable_conv_bn_act(x, filters, size, strides=(1, 1), padding='same',        name=None):    if name is not None:        conv_name = name + '_conv'        bn_name = name + '_bn'    else:        conv_name = None        bn_name = None    x = SeparableConv2D(filters, size, strides=strides, padding=padding,            use_bias=False, name=conv_name)(x)    x = BatchNormalization(axis=-1, scale=False, name=bn_name)(x)    x = Activation('relu', name=name)(x)    return x 
开发者ID:dluvizon,项目名称:deephar,代码行数:16,代码来源:layers.py


示例14: separable_conv_bn

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SeparableConv2D [as 别名]def separable_conv_bn(x, filters, size, strides=(1, 1), padding='same',        name=None):    if name is not None:        conv_name = name + '_conv'    else:        conv_name = None    x = SeparableConv2D(filters, size, strides=strides, padding=padding,            use_bias=False, name=conv_name)(x)    x = BatchNormalization(axis=-1, scale=False, name=name)(x)    return x 
开发者ID:dluvizon,项目名称:deephar,代码行数:13,代码来源:layers.py


示例15: a3c_sepconv

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SeparableConv2D [as 别名]def a3c_sepconv(x, params):    """    Feed forward model used in a3c paper but with seperable convolutions    :param x: input tensor    :param params: {dict} hyperparams (sub-selection)    :return: output tensor    :raises ValueError: could not find parameter    """    x = layers.SeparableConv2D(filters=16, kernel_size=8, strides=4, activation='relu')(x)    x = layers.SeparableConv2D(filters=32, kernel_size=4, strides=2, activation='relu')(x)    return x 
开发者ID:HugoCMU,项目名称:pirateAI,代码行数:13,代码来源:model_chunks.py


示例16: depthwiseConv

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SeparableConv2D [as 别名]def depthwiseConv(layer, layer_in, layerId, tensor=True):    out = {}    padding = get_padding(layer)    filters = layer['params']['num_output']    k_h, k_w = layer['params']['kernel_h'], layer['params']['kernel_w']    s_h, s_w = layer['params']['stride_h'], layer['params']['stride_w']    depth_multiplier = layer['params']['depth_multiplier']    use_bias = layer['params']['use_bias']    depthwise_initializer = layer['params']['depthwise_initializer']    pointwise_initializer = layer['params']['pointwise_initializer']    bias_initializer = layer['params']['bias_initializer']    if (padding == 'custom'):        p_h, p_w = layer['params']['pad_h'], layer['params']['pad_w']        out[layerId + 'Pad'] = ZeroPadding2D(padding=(p_h, p_w))(*layer_in)        padding = 'valid'        layer_in = [out[layerId + 'Pad']]    depthwise_regularizer = regularizerMap[layer['params']['depthwise_regularizer']]    pointwise_regularizer = regularizerMap[layer['params']['pointwise_regularizer']]    bias_regularizer = regularizerMap[layer['params']['bias_regularizer']]    activity_regularizer = regularizerMap[layer['params']['activity_regularizer']]    depthwise_constraint = constraintMap[layer['params']['depthwise_constraint']]    pointwise_constraint = constraintMap[layer['params']['pointwise_constraint']]    bias_constraint = constraintMap[layer['params']['bias_constraint']]    out[layerId] = SeparableConv2D(filters, [k_h, k_w], strides=(s_h, s_w), padding=padding,                                   depth_multiplier=depth_multiplier, use_bias=use_bias,                                   depthwise_initializer=depthwise_initializer,                                   pointwise_initializer=pointwise_initializer,                                   bias_initializer=bias_initializer,                                   depthwise_regularizer=depthwise_regularizer,                                   pointwise_regularizer=pointwise_regularizer,                                   bias_regularizer=bias_regularizer,                                   activity_regularizer=activity_regularizer,                                   depthwise_constraint=depthwise_constraint,                                   pointwise_constraint=pointwise_constraint,                                   bias_constraint=bias_constraint,)(*layer_in)    return out 
开发者ID:Cloud-CV,项目名称:Fabrik,代码行数:38,代码来源:layers_export.py


示例17: big_XCEPTION

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SeparableConv2D [as 别名]def big_XCEPTION(input_shape, num_classes):    img_input = Input(input_shape)    x = Conv2D(32, (3, 3), strides=(2, 2), use_bias=False)(img_input)    x = BatchNormalization(name='block1_conv1_bn')(x)    x = Activation('relu', name='block1_conv1_act')(x)    x = Conv2D(64, (3, 3), use_bias=False)(x)    x = BatchNormalization(name='block1_conv2_bn')(x)    x = Activation('relu', name='block1_conv2_act')(x)    residual = Conv2D(128, (1, 1), strides=(2, 2),                      padding='same', use_bias=False)(x)    residual = BatchNormalization()(residual)    x = SeparableConv2D(128, (3, 3), padding='same', use_bias=False)(x)    x = BatchNormalization(name='block2_sepconv1_bn')(x)    x = Activation('relu', name='block2_sepconv2_act')(x)    x = SeparableConv2D(128, (3, 3), padding='same', use_bias=False)(x)    x = BatchNormalization(name='block2_sepconv2_bn')(x)    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)    x = layers.add([x, residual])    residual = Conv2D(256, (1, 1), strides=(2, 2),                      padding='same', use_bias=False)(x)    residual = BatchNormalization()(residual)    x = Activation('relu', name='block3_sepconv1_act')(x)    x = SeparableConv2D(256, (3, 3), padding='same', use_bias=False)(x)    x = BatchNormalization(name='block3_sepconv1_bn')(x)    x = Activation('relu', name='block3_sepconv2_act')(x)    x = SeparableConv2D(256, (3, 3), padding='same', use_bias=False)(x)    x = BatchNormalization(name='block3_sepconv2_bn')(x)    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)    x = layers.add([x, residual])    x = Conv2D(num_classes, (3, 3),               # kernel_regularizer=regularization,               padding='same')(x)    x = GlobalAveragePooling2D()(x)    output = Activation('softmax', name='predictions')(x)    model = Model(img_input, output)    return model 
开发者ID:oarriaga,项目名称:face_classification,代码行数:45,代码来源:cnn.py


示例18: big_XCEPTION

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SeparableConv2D [as 别名]def big_XCEPTION(input_shape, num_classes):    img_input = Input(input_shape)    x = Conv2D(32, (3, 3), strides=(2, 2), use_bias=False)(img_input)    x = BatchNormalization(name='block1_conv1_bn')(x)    x = Activation('relu', name='block1_conv1_act')(x)    x = Conv2D(64, (3, 3), use_bias=False)(x)    x = BatchNormalization(name='block1_conv2_bn')(x)    x = Activation('relu', name='block1_conv2_act')(x)    residual = Conv2D(128, (1, 1), strides=(2, 2),                      padding='same', use_bias=False)(x)    residual = BatchNormalization()(residual)    x = SeparableConv2D(128, (3, 3), padding='same', use_bias=False)(x)    x = BatchNormalization(name='block2_sepconv1_bn')(x)    x = Activation('relu', name='block2_sepconv2_act')(x)    x = SeparableConv2D(128, (3, 3), padding='same', use_bias=False)(x)    x = BatchNormalization(name='block2_sepconv2_bn')(x)    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)    x = layers.add([x, residual])    residual = Conv2D(256, (1, 1), strides=(2, 2),                      padding='same', use_bias=False)(x)    residual = BatchNormalization()(residual)    x = Activation('relu', name='block3_sepconv1_act')(x)    x = SeparableConv2D(256, (3, 3), padding='same', use_bias=False)(x)    x = BatchNormalization(name='block3_sepconv1_bn')(x)    x = Activation('relu', name='block3_sepconv2_act')(x)    x = SeparableConv2D(256, (3, 3), padding='same', use_bias=False)(x)    x = BatchNormalization(name='block3_sepconv2_bn')(x)    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)    x = layers.add([x, residual])    x = Conv2D(num_classes, (3, 3),            #kernel_regularizer=regularization,            padding='same')(x)    x = GlobalAveragePooling2D()(x)    output = Activation('softmax',name='predictions')(x)    model = Model(img_input, output)    return model 
开发者ID:omar178,项目名称:Emotion-recognition,代码行数:45,代码来源:cnn.py


万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。