您当前的位置:首页 > IT编程 > Keras
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Python layers.GlobalAveragePooling1D方法代码示例

51自学网 2020-12-01 11:09:05
  Keras
这篇教程Python layers.GlobalAveragePooling1D方法代码示例写得很实用,希望能帮到您。

本文整理汇总了Python中keras.layers.GlobalAveragePooling1D方法的典型用法代码示例。如果您正苦于以下问题:Python layers.GlobalAveragePooling1D方法的具体用法?Python layers.GlobalAveragePooling1D怎么用?Python layers.GlobalAveragePooling1D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.layers的用法示例。

在下文中一共展示了layers.GlobalAveragePooling1D方法的27个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: fasttext_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalAveragePooling1D [as 别名]def fasttext_model(max_len=300,                   vocabulary_size=20000,                   embedding_dim=128,                   num_classes=4):    model = Sequential()    # embed layer by maps vocab index into emb dimensions    model.add(Embedding(input_dim=vocabulary_size, output_dim=embedding_dim, input_length=max_len))    # pooling the embedding    model.add(GlobalAveragePooling1D())    # output multi classification of num_classes    model.add(Dense(num_classes, activation='softmax'))    model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])    model.summary()    return model 
开发者ID:shibing624,项目名称:text-classifier,代码行数:18,代码来源:deep_model.py


示例2: bidLstm_simple

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalAveragePooling1D [as 别名]def bidLstm_simple(maxlen, embed_size, recurrent_units, dropout_rate, recurrent_dropout_rate, dense_size, nb_classes):    #inp = Input(shape=(maxlen, ))    input_layer = Input(shape=(maxlen, embed_size), )    #x = Embedding(max_features, embed_size, weights=[embedding_matrix], trainable=False)(inp)    x = Bidirectional(LSTM(recurrent_units, return_sequences=True, dropout=dropout_rate,                           recurrent_dropout=dropout_rate))(input_layer)    x = Dropout(dropout_rate)(x)    x_a = GlobalMaxPool1D()(x)    x_b = GlobalAveragePooling1D()(x)    #x_c = AttentionWeightedAverage()(x)    #x_a = MaxPooling1D(pool_size=2)(x)    #x_b = AveragePooling1D(pool_size=2)(x)    x = concatenate([x_a,x_b])    x = Dense(dense_size, activation="relu")(x)    x = Dropout(dropout_rate)(x)    x = Dense(nb_classes, activation="sigmoid")(x)    model = Model(inputs=input_layer, outputs=x)    model.summary()    model.compile(loss='binary_crossentropy',         optimizer='adam',         metrics=['accuracy'])    return model# bidirectional LSTM with attention layer 
开发者ID:kermitt2,项目名称:delft,代码行数:27,代码来源:models.py


示例3: __init__

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalAveragePooling1D [as 别名]def __init__(self, nb_classes, nb_tokens, maxlen,                 nb_head=8, head_size=16, nb_transformer=2,                 embedding_dim=256, embeddings=None, embed_l2=1E-6,                 pos_embed=False, final_dropout_rate=0.15,                 embed_dropout_rate=0.15):        self.nb_classes = nb_classes        self.nb_tokens = nb_tokens        self.maxlen = maxlen        self.nb_head = nb_head        self.head_size = head_size        self.embedding_dim = embedding_dim        self.nb_transformer = nb_transformer        if embeddings is not None:            self.token_embeddings = [embeddings]        else:            self.token_embeddings = None        self.pos_embed = pos_embed        self.final_dropout_rate = final_dropout_rate        self.embed_dropout_rate = embed_dropout_rate        self.pos_embed_layer = Position_Embedding(name='position_embedding')        self.transformers = [Self_Attention(            nb_head, head_size, name='self_attention_%d' % i) for i in range(nb_transformer)]        self.pool = GlobalAveragePooling1D()        self.invalid_params = {'pos_embed_layer', 'transformers', 'pool'} 
开发者ID:stevewyl,项目名称:nlp_toolkit,代码行数:26,代码来源:transformer.py


示例4: cnn_spatial_multi

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalAveragePooling1D [as 别名]def cnn_spatial_multi(self):        # spatial stream (frozen)        cnn_spatial = self.cnn_spatial()        if self.saved_spatial_weights is None:            print("[ERROR] No saved_spatial_weights weights file!")        else:            cnn_spatial.load_weights(self.saved_spatial_weights)        for layer in cnn_spatial.layers:            layer.trainable = False        # building inputs and output        model = Sequential()        model.add(TimeDistributed((cnn_spatial), input_shape=self.input_shape_spatial_multi))        model.add(GlobalAveragePooling1D())        return model    # CNN model for the temporal stream with multiple inputs 
开发者ID:wushidonguc,项目名称:two-stream-action-recognition-keras,代码行数:20,代码来源:fuse_validate_model.py


示例5: cnn_temporal_multi

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalAveragePooling1D [as 别名]def cnn_temporal_multi(self):        # spatial stream (frozen)        cnn_temporal = self.cnn_temporal()        if self.saved_temporal_weights is None:            print("[ERROR] No saved_temporal_weights weights file!")        else:            cnn_temporal.load_weights(self.saved_temporal_weights)        for layer in cnn_temporal.layers:            layer.trainable = False        # building inputs and output        model = Sequential()        model.add(TimeDistributed((cnn_temporal), input_shape=self.input_shape_temporal_multi))        model.add(GlobalAveragePooling1D())        return model    # CNN model for the spatial stream 
开发者ID:wushidonguc,项目名称:two-stream-action-recognition-keras,代码行数:20,代码来源:fuse_validate_model.py


示例6: create_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalAveragePooling1D [as 别名]def create_model(self, hyper_parameters):        """            构建神经网络        :param hyper_parameters:json,  hyper parameters of network        :return: tensor, moedl        """        super().create_model(hyper_parameters)        embedding = self.word_embedding.output        def win_mean(x):            res_list = []            for i in range(self.len_max-self.n_win+1):                x_mean = tf.reduce_mean(x[:, i:i + self.n_win, :], axis=1)                x_mean_dims = tf.expand_dims(x_mean, axis=-1)                res_list.append(x_mean_dims)            res_list = tf.concat(res_list, axis=-1)            gg = tf.reduce_max(res_list, axis=-1)            return gg        if self.encode_type=="HIERARCHICAL":            x = Lambda(win_mean, output_shape=(self.embed_size, ))(embedding)        elif self.encode_type=="MAX":            x = GlobalMaxPooling1D()(embedding)        elif self.encode_type=="AVG":            x = GlobalAveragePooling1D()(embedding)        elif self.encode_type == "CONCAT":            x_max = GlobalMaxPooling1D()(embedding)            x_avg = GlobalAveragePooling1D()(embedding)            x = Concatenate()([x_max, x_avg])        else:            raise RuntimeError("encode_type must be 'MAX', 'AVG', 'CONCAT', 'HIERARCHICAL'")        output = Dense(self.label, activation=self.activate_classify)(x)        self.model = Model(inputs=self.word_embedding.input, outputs=output)        self.model.summary(132) 
开发者ID:yongzhuo,项目名称:Keras-TextClassification,代码行数:37,代码来源:graph.py


示例7: lstm

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalAveragePooling1D [as 别名]def lstm(maxlen, embed_size, recurrent_units, dropout_rate, recurrent_dropout_rate, dense_size, nb_classes):    #inp = Input(shape=(maxlen, ))    input_layer = Input(shape=(maxlen, embed_size), )    #x = Embedding(max_features, embed_size, weights=[embedding_matrix],    #              trainable=False)(inp)    x = LSTM(recurrent_units, return_sequences=True, dropout=dropout_rate,                           recurrent_dropout=dropout_rate)(input_layer)    #x = CuDNNLSTM(recurrent_units, return_sequences=True)(x)    x = Dropout(dropout_rate)(x)    x_a = GlobalMaxPool1D()(x)    x_b = GlobalAveragePooling1D()(x)    #x_c = AttentionWeightedAverage()(x)    #x_a = MaxPooling1D(pool_size=2)(x)    #x_b = AveragePooling1D(pool_size=2)(x)    x = concatenate([x_a,x_b])    x = Dense(dense_size, activation="relu")(x)    x = Dropout(dropout_rate)(x)    x = Dense(nb_classes, activation="sigmoid")(x)    model = Model(inputs=input_layer, outputs=x)    model.summary()    model.compile(loss='binary_crossentropy',                 optimizer='adam',                 metrics=['accuracy'])    return model# bidirectional LSTM 
开发者ID:kermitt2,项目名称:delft,代码行数:29,代码来源:models.py


示例8: cnn3

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalAveragePooling1D [as 别名]def cnn3(maxlen, embed_size, recurrent_units, dropout_rate, recurrent_dropout_rate, dense_size, nb_classes):    #inp = Input(shape=(maxlen, ))    input_layer = Input(shape=(maxlen, embed_size), )    #x = Embedding(max_features, embed_size, weights=[embedding_matrix], trainable=False)(inp)    x = GRU(recurrent_units, return_sequences=True, dropout=dropout_rate,                           recurrent_dropout=dropout_rate)(input_layer)    #x = Dropout(dropout_rate)(x)     x = Conv1D(filters=recurrent_units, kernel_size=2, padding='same', activation='relu')(x)    x = MaxPooling1D(pool_size=2)(x)    x = Conv1D(filters=recurrent_units, kernel_size=2, padding='same', activation='relu')(x)    x = MaxPooling1D(pool_size=2)(x)    x = Conv1D(filters=recurrent_units, kernel_size=2, padding='same', activation='relu')(x)    x = MaxPooling1D(pool_size=2)(x)    x_a = GlobalMaxPool1D()(x)    x_b = GlobalAveragePooling1D()(x)    #x_c = AttentionWeightedAverage()(x)    #x_a = MaxPooling1D(pool_size=2)(x)    #x_b = AveragePooling1D(pool_size=2)(x)    x = concatenate([x_a,x_b])    #x = Dropout(dropout_rate)(x)    x = Dense(dense_size, activation="relu")(x)    x = Dense(nb_classes, activation="sigmoid")(x)    model = Model(inputs=input_layer, outputs=x)    model.summary()      model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])    return model 
开发者ID:kermitt2,项目名称:delft,代码行数:29,代码来源:models.py


示例9: gru

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalAveragePooling1D [as 别名]def gru(maxlen, embed_size, recurrent_units, dropout_rate, recurrent_dropout_rate, dense_size, nb_classes):    #input_layer = Input(shape=(maxlen,))    input_layer = Input(shape=(maxlen, embed_size), )    #embedding_layer = Embedding(max_features, embed_size,     #                            weights=[embedding_matrix], trainable=False)(input_layer)    x = Bidirectional(GRU(recurrent_units, return_sequences=True, dropout=dropout_rate,                           recurrent_dropout=recurrent_dropout_rate))(input_layer)    x = Dropout(dropout_rate)(x)    x = Bidirectional(GRU(recurrent_units, return_sequences=True, dropout=dropout_rate,                           recurrent_dropout=recurrent_dropout_rate))(x)    #x = AttentionWeightedAverage(maxlen)(x)    x_a = GlobalMaxPool1D()(x)    x_b = GlobalAveragePooling1D()(x)    #x_c = AttentionWeightedAverage()(x)    #x_a = MaxPooling1D(pool_size=2)(x)    #x_b = AveragePooling1D(pool_size=2)(x)    x = concatenate([x_a,x_b], axis=1)    #x = Dense(dense_size, activation="relu")(x)    #x = Dropout(dropout_rate)(x)    x = Dense(dense_size, activation="relu")(x)    output_layer = Dense(nb_classes, activation="sigmoid")(x)    model = Model(inputs=input_layer, outputs=output_layer)    model.summary()    model.compile(loss='binary_crossentropy',                  optimizer=RMSprop(clipvalue=1, clipnorm=1),                  #optimizer='adam',                  metrics=['accuracy'])    return model 
开发者ID:kermitt2,项目名称:delft,代码行数:31,代码来源:models.py


示例10: gru_simple

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalAveragePooling1D [as 别名]def gru_simple(maxlen, embed_size, recurrent_units, dropout_rate, recurrent_dropout_rate, dense_size, nb_classes):    #input_layer = Input(shape=(maxlen,))    input_layer = Input(shape=(maxlen, embed_size), )    #embedding_layer = Embedding(max_features, embed_size,    #                            weights=[embedding_matrix], trainable=False)(input_layer)    x = Bidirectional(GRU(recurrent_units, return_sequences=True, dropout=dropout_rate,                           recurrent_dropout=dropout_rate))(input_layer)    #x = AttentionWeightedAverage(maxlen)(x)    x_a = GlobalMaxPool1D()(x)    x_b = GlobalAveragePooling1D()(x)    #x_c = AttentionWeightedAverage()(x)    #x_a = MaxPooling1D(pool_size=2)(x)    #x_b = AveragePooling1D(pool_size=2)(x)    x = concatenate([x_a,x_b], axis=1)    #x = Dense(dense_size, activation="relu")(x)    #x = Dropout(dropout_rate)(x)    x = Dense(dense_size, activation="relu")(x)    output_layer = Dense(nb_classes, activation="sigmoid")(x)    model = Model(inputs=input_layer, outputs=output_layer)    model.summary()    model.compile(loss='binary_crossentropy',                  optimizer=RMSprop(clipvalue=1, clipnorm=1),                  #optimizer='adam',                  metrics=['accuracy'])    return model# bid GRU + bid LSTM 
开发者ID:kermitt2,项目名称:delft,代码行数:31,代码来源:models.py


示例11: mix1

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalAveragePooling1D [as 别名]def mix1(maxlen, embed_size, recurrent_units, dropout_rate, recurrent_dropout_rate, dense_size, nb_classes):    #input_layer = Input(shape=(maxlen,))    input_layer = Input(shape=(maxlen, embed_size), )    #embedding_layer = Embedding(max_features, embed_size,    #                            weights=[embedding_matrix], trainable=False)(input_layer)    x = Bidirectional(GRU(recurrent_units, return_sequences=True, dropout=dropout_rate,                           recurrent_dropout=recurrent_dropout_rate))(input_layer)    x = Dropout(dropout_rate)(x)    x = Bidirectional(LSTM(recurrent_units, return_sequences=True, dropout=dropout_rate,                           recurrent_dropout=recurrent_dropout_rate))(x)    x_a = GlobalMaxPool1D()(x)    x_b = GlobalAveragePooling1D()(x)    x = concatenate([x_a,x_b])    x = Dense(dense_size, activation="relu")(x)    output_layer = Dense(nb_classes, activation="sigmoid")(x)    model = Model(inputs=input_layer, outputs=output_layer)    model.summary()    model.compile(loss='binary_crossentropy',                  optimizer=RMSprop(clipvalue=1, clipnorm=1),                  #optimizer='adam',                  metrics=['accuracy'])    return model# DPCNN 
开发者ID:kermitt2,项目名称:delft,代码行数:30,代码来源:models.py


示例12: build_model_avt_cnn

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalAveragePooling1D [as 别名]def build_model_avt_cnn(self):        #########text-cnn#########        # bert embedding        bert_inputs, bert_output = KerasBertEmbedding().bert_encode()        # text cnn        bert_output_emmbed = SpatialDropout1D(rate=self.keep_prob)(bert_output)        concat_x = []        concat_y = []        concat_z = []        for index, filter_size in enumerate(self.filters):            conv = Conv1D(name='TextCNN_Conv1D_{}'.format(index), filters=int(self.embedding_dim/2), kernel_size=self.filters[index], padding='valid', kernel_initializer='normal', activation='relu')(bert_output_emmbed)            x = GlobalMaxPooling1D(name='TextCNN_MaxPooling1D_{}'.format(index))(conv)            y = GlobalAveragePooling1D(name='TextCNN_AveragePooling1D_{}'.format(index))(conv)            z = AttentionWeightedAverage(name='TextCNN_Annention_{}'.format(index))(conv)            concat_x.append(x)            concat_y.append(y)            concat_z.append(z)        merge_x = Concatenate(axis=1)(concat_x)        merge_y = Concatenate(axis=1)(concat_y)        merge_z = Concatenate(axis=1)(concat_z)        merge_xyz = Concatenate(axis=1)([merge_x, merge_y, merge_z])        x = Dropout(self.keep_prob)(merge_xyz)        # 最后就是softmax        dense_layer = Dense(self.label, activation=self.activation)(x)        output_layers = [dense_layer]        self.model = Model(bert_inputs, output_layers) 
开发者ID:yongzhuo,项目名称:nlp_xiaojiang,代码行数:30,代码来源:keras_bert_classify_text_cnn.py


示例13: Archi_3CONV64C_1FC256_GAP_f3fd

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalAveragePooling1D [as 别名]def Archi_3CONV64C_1FC256_GAP_f3fd(X, nbclasses):		#-- get the input sizes	m, L, depth = X.shape	input_shape = (L,depth)		#-- parameters of the architecture	l2_rate = 1.e-6	dropout_rate = 0.5	nb_conv = 3	nb_fc= 1	nbunits_conv = 640 #-- will be double	nbunits_fc = 256 #-- will be double		# Define the input placeholder.	X_input = Input(input_shape)			#-- nb_conv CONV layers	X = X_input	for add in range(nb_conv):		X = conv_bn_relu_drop(X, nbunits=nbunits_conv, kernel_size=3, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)	#-- Flatten + 	1 FC layers	X = GlobalAveragePooling1D()(X)	for add in range(nb_fc):			X = fc_bn_relu_drop(X, nbunits=nbunits_fc, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)			#-- SOFTMAX layer	out = softmax(X, nbclasses, kernel_regularizer=l2(l2_rate))			# Create model.	return Model(inputs = X_input, outputs = out, name='Archi_3CONV64C_1FC256_GAP_f3fd')	#----------------------------------------------------------------------- 
开发者ID:charlotte-pel,项目名称:temporalCNN,代码行数:36,代码来源:architecture_pooling.py


示例14: Archi_3CONV64C_1FC256_GAP_f5fd

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalAveragePooling1D [as 别名]def Archi_3CONV64C_1FC256_GAP_f5fd(X, nbclasses):		#-- get the input sizes	m, L, depth = X.shape	input_shape = (L,depth)		#-- parameters of the architecture	l2_rate = 1.e-6	dropout_rate = 0.5	nb_conv = 3	nb_fc= 1	nbunits_conv = 512 #-- will be double	nbunits_fc = 256 #-- will be double		# Define the input placeholder.	X_input = Input(input_shape)			#-- nb_conv CONV layers	X = X_input	for add in range(nb_conv):		X = conv_bn_relu_drop(X, nbunits=nbunits_conv, kernel_size=5, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)	#-- Flatten + 	1 FC layers	X = GlobalAveragePooling1D()(X)	for add in range(nb_fc):			X = fc_bn_relu_drop(X, nbunits=nbunits_fc, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)			#-- SOFTMAX layer	out = softmax(X, nbclasses, kernel_regularizer=l2(l2_rate))			# Create model.	return Model(inputs = X_input, outputs = out, name='Archi_3CONV64C_1FC256_GAP_f5fd')	#----------------------------------------------------------------------- 
开发者ID:charlotte-pel,项目名称:temporalCNN,代码行数:36,代码来源:architecture_pooling.py


示例15: Archi_3CONV64C_1FC256_GAP_f9fd

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalAveragePooling1D [as 别名]def Archi_3CONV64C_1FC256_GAP_f9fd(X, nbclasses):		#-- get the input sizes	m, L, depth = X.shape	input_shape = (L,depth)		#-- parameters of the architecture	l2_rate = 1.e-6	dropout_rate = 0.5	nb_conv = 3	nb_fc= 1	nbunits_conv = 384 #-- will be double	nbunits_fc = 256 #-- will be double		# Define the input placeholder.	X_input = Input(input_shape)			#-- nb_conv CONV layers	X = X_input	for add in range(nb_conv):		X = conv_bn_relu_drop(X, nbunits=nbunits_conv, kernel_size=9, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)	#-- Flatten + 	1 FC layers	X = GlobalAveragePooling1D()(X)	for add in range(nb_fc):			X = fc_bn_relu_drop(X, nbunits=nbunits_fc, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)			#-- SOFTMAX layer	out = softmax(X, nbclasses, kernel_regularizer=l2(l2_rate))			# Create model.	return Model(inputs = X_input, outputs = out, name='Archi_3CONV64C_1FC256_GAP_f9fd')	#----------------------------------------------------------------------- 
开发者ID:charlotte-pel,项目名称:temporalCNN,代码行数:35,代码来源:architecture_pooling.py


示例16: Archi_3CONV64C_1FC256_GAP_f17fd

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalAveragePooling1D [as 别名]def Archi_3CONV64C_1FC256_GAP_f17fd(X, nbclasses):		#-- get the input sizes	m, L, depth = X.shape	input_shape = (L,depth)		#-- parameters of the architecture	l2_rate = 1.e-6	dropout_rate = 0.5	nb_conv = 3	nb_fc= 1	nbunits_conv = 256 #-- will be double	nbunits_fc = 256 #-- will be double		# Define the input placeholder.	X_input = Input(input_shape)			#-- nb_conv CONV layers	X = X_input	for add in range(nb_conv):		X = conv_bn_relu_drop(X, nbunits=nbunits_conv, kernel_size=17, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)	#-- Flatten + 	1 FC layers	X = GlobalAveragePooling1D()(X)	for add in range(nb_fc):			X = fc_bn_relu_drop(X, nbunits=nbunits_fc, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)			#-- SOFTMAX layer	out = softmax(X, nbclasses, kernel_regularizer=l2(l2_rate))			# Create model.	return Model(inputs = X_input, outputs = out, name='Archi_3CONV64C_1FC256_GAP_f17fd')	#----------------------------------------------------------------------- 
开发者ID:charlotte-pel,项目名称:temporalCNN,代码行数:37,代码来源:architecture_pooling.py


示例17: Archi_3CONV64C_1FC256_GAP_f33fd

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalAveragePooling1D [as 别名]def Archi_3CONV64C_1FC256_GAP_f33fd(X, nbclasses):		#-- get the input sizes	m, L, depth = X.shape	input_shape = (L,depth)		#-- parameters of the architecture	l2_rate = 1.e-6	dropout_rate = 0.5	nb_conv = 3	nb_fc= 1	nbunits_conv = 192 #-- will be double	nbunits_fc = 256 #-- will be double		# Define the input placeholder.	X_input = Input(input_shape)			#-- nb_conv CONV layers	X = X_input	for add in range(nb_conv):		X = conv_bn_relu_drop(X, nbunits=nbunits_conv, kernel_size=33, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)	#-- Flatten + 	1 FC layers	X = GlobalAveragePooling1D()(X)	for add in range(nb_fc):			X = fc_bn_relu_drop(X, nbunits=nbunits_fc, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)			#-- SOFTMAX layer	out = softmax(X, nbclasses, kernel_regularizer=l2(l2_rate))			# Create model.	return Model(inputs = X_input, outputs = out, name='Archi_3CONV64C_1FC256_GAP_f33fd')	#----------------------------------------------------------------------- 
开发者ID:charlotte-pel,项目名称:temporalCNN,代码行数:38,代码来源:architecture_pooling.py


示例18: Archi_3CONV2MP_1FC256_GAP_f17_9_5fd

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalAveragePooling1D [as 别名]def Archi_3CONV2MP_1FC256_GAP_f17_9_5fd(X, nbclasses):		#-- get the input sizes	m, L, depth = X.shape	input_shape = (L,depth)		#-- parameters of the architecture	l2_rate = 1.e-6	dropout_rate = 0.5	nb_conv = 3	nb_fc= 1	nbunits_fc = 256 #-- will be double		# Define the input placeholder.	X_input = Input(input_shape)			#-- nb_conv CONV layers	X = conv_bn_relu(X_input, nbunits=256, kernel_size=17, kernel_regularizer=l2(l2_rate), padding='same')	X = MaxPooling1D(pool_size=2, strides=2, padding='valid')(X)	X = Dropout(dropout_rate)(X)	X = conv_bn_relu(X, nbunits=512, kernel_size=9, kernel_regularizer=l2(l2_rate), padding='same')	X = MaxPooling1D(pool_size=2, strides=2, padding='valid')(X)	X = Dropout(dropout_rate)(X)	X = conv_bn_relu(X, nbunits=512, kernel_size=5, kernel_regularizer=l2(l2_rate), padding='same')	X = MaxPooling1D(pool_size=2, strides=2, padding='valid')(X)	X = Dropout(dropout_rate)(X)		#-- Flatten + 	1 FC layers	X = GlobalAveragePooling1D()(X)	for add in range(nb_fc):			X = fc_bn_relu_drop(X, nbunits=nbunits_fc, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)			#-- SOFTMAX layer	out = softmax(X, nbclasses, kernel_regularizer=l2(l2_rate))			# Create model.	return Model(inputs = X_input, outputs = out, name='Archi_3CONV2MP_1FC256_GAP_f17_9_5fd')	#----------------------------------------------------------------------- 
开发者ID:charlotte-pel,项目名称:temporalCNN,代码行数:42,代码来源:architecture_pooling.py


示例19: Archi_3CONV2MP_1FC256_GAP_f9_5_3fd

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalAveragePooling1D [as 别名]def Archi_3CONV2MP_1FC256_GAP_f9_5_3fd(X, nbclasses):		#-- get the input sizes	m, L, depth = X.shape	input_shape = (L,depth)		#-- parameters of the architecture	l2_rate = 1.e-6	dropout_rate = 0.5	nb_conv = 3	nb_fc= 1	nbunits_fc = 256 #-- will be double		# Define the input placeholder.	X_input = Input(input_shape)			#-- nb_conv CONV layers	X = conv_bn_relu(X_input, nbunits=512, kernel_size=9, kernel_regularizer=l2(l2_rate), padding='same')	X = MaxPooling1D(pool_size=2, strides=2, padding='valid')(X)	X = Dropout(dropout_rate)(X)	X = conv_bn_relu(X, nbunits=512, kernel_size=5, kernel_regularizer=l2(l2_rate), padding='same')	X = MaxPooling1D(pool_size=2, strides=2, padding='valid')(X)	X = Dropout(dropout_rate)(X)	X = conv_bn_relu(X, nbunits=512, kernel_size=3, kernel_regularizer=l2(l2_rate), padding='same')	X = MaxPooling1D(pool_size=2, strides=2, padding='valid')(X)	X = Dropout(dropout_rate)(X)		#-- Flatten + 	1 FC layers	X = GlobalAveragePooling1D()(X)	for add in range(nb_fc):			X = fc_bn_relu_drop(X, nbunits=nbunits_fc, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)			#-- SOFTMAX layer	out = softmax(X, nbclasses, kernel_regularizer=l2(l2_rate))			# Create model.	return Model(inputs = X_input, outputs = out, name='Archi_3CONV2MP_1FC256_GAP_f9_5_3fd')		#----------------------------------------------------------------------- 
开发者ID:charlotte-pel,项目名称:temporalCNN,代码行数:41,代码来源:architecture_pooling.py


示例20: Archi_3CONV2MP_1FC256_GAP_f5_3_1fd

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalAveragePooling1D [as 别名]def Archi_3CONV2MP_1FC256_GAP_f5_3_1fd(X, nbclasses):		#-- get the input sizes	m, L, depth = X.shape	input_shape = (L,depth)		#-- parameters of the architecture	l2_rate = 1.e-6	dropout_rate = 0.5	nb_conv = 3	nb_fc= 1	nbunits_fc = 256 #-- will be double		# Define the input placeholder.	X_input = Input(input_shape)			#-- nb_conv CONV layers	X = conv_bn_relu(X_input, nbunits=512, kernel_size=5, kernel_regularizer=l2(l2_rate), padding='same')	X = MaxPooling1D(pool_size=2, strides=2, padding='valid')(X)	X = Dropout(dropout_rate)(X)	X = conv_bn_relu(X, nbunits=768, kernel_size=3, kernel_regularizer=l2(l2_rate), padding='same')	X = MaxPooling1D(pool_size=2, strides=2, padding='valid')(X)	X = Dropout(dropout_rate)(X)	X = conv_bn_relu(X, nbunits=1024, kernel_size=1, kernel_regularizer=l2(l2_rate), padding='same')	#~ X = MaxPooling1D(pool_size=2, strides=2, padding='valid')(X)	X = Dropout(dropout_rate)(X)		#-- Flatten + 	1 FC layers	X = GlobalAveragePooling1D()(X)	for add in range(nb_fc):			X = fc_bn_relu_drop(X, nbunits=nbunits_fc, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)			#-- SOFTMAX layer	out = softmax(X, nbclasses, kernel_regularizer=l2(l2_rate))			# Create model.	return Model(inputs = X_input, outputs = out, name='Archi_3CONV2MP_1FC256_GAP_f5_3_1fd')		#----------------------------------------------------------------------- 
开发者ID:charlotte-pel,项目名称:temporalCNN,代码行数:41,代码来源:architecture_pooling.py


示例21: Archi_3CONV2MP_1FC256_GAP_f3_1_1fd

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalAveragePooling1D [as 别名]def Archi_3CONV2MP_1FC256_GAP_f3_1_1fd(X, nbclasses):		#-- get the input sizes	m, L, depth = X.shape	input_shape = (L,depth)		#-- parameters of the architecture	l2_rate = 1.e-6	dropout_rate = 0.5	nb_conv = 3	nb_fc= 1	nbunits_fc = 256 #-- will be double		# Define the input placeholder.	X_input = Input(input_shape)			#-- nb_conv CONV layers	X = conv_bn_relu(X_input, nbunits=768, kernel_size=3, kernel_regularizer=l2(l2_rate), padding='same')	X = MaxPooling1D(pool_size=2, strides=2, padding='valid')(X)	X = Dropout(dropout_rate)(X)	X = conv_bn_relu(X, nbunits=1024, kernel_size=1, kernel_regularizer=l2(l2_rate), padding='same')	X = Dropout(dropout_rate)(X)	X = conv_bn_relu(X, nbunits=1024, kernel_size=1, kernel_regularizer=l2(l2_rate), padding='same')	X = Dropout(dropout_rate)(X)		#-- Flatten + 	1 FC layers	X = GlobalAveragePooling1D()(X)	for add in range(nb_fc):			X = fc_bn_relu_drop(X, nbunits=nbunits_fc, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)			#-- SOFTMAX layer	out = softmax(X, nbclasses, kernel_regularizer=l2(l2_rate))			# Create model.	return Model(inputs = X_input, outputs = out, name='Archi_3CONV2MP_1FC256_GAP_f3_1_1fd')			#----------------------------------------------------------------------- 
开发者ID:charlotte-pel,项目名称:temporalCNN,代码行数:40,代码来源:architecture_pooling.py


示例22: Archi_3CONV2AP_1FC256_GAP_f33_17_9fd

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalAveragePooling1D [as 别名]def Archi_3CONV2AP_1FC256_GAP_f33_17_9fd(X, nbclasses):		#-- get the input sizes	m, L, depth = X.shape	input_shape = (L,depth)		#-- parameters of the architecture	l2_rate = 1.e-6	dropout_rate = 0.5	nb_conv = 3	nb_fc= 1	nbunits_conv = 128 #-- will be double	nbunits_fc = 256 #-- will be double		# Define the input placeholder.	X_input = Input(input_shape)			#-- nb_conv CONV layers	X = conv_bn_relu(X_input, nbunits=256, kernel_size=33, kernel_regularizer=l2(l2_rate), padding='same')	X = AveragePooling1D(pool_size=2, strides=2, padding='valid')(X)	X = Dropout(dropout_rate)(X)	X = conv_bn_relu(X, nbunits=256, kernel_size=17, kernel_regularizer=l2(l2_rate), padding='same')	X = AveragePooling1D(pool_size=2, strides=2, padding='valid')(X)	X = Dropout(dropout_rate)(X)	X = conv_bn_relu(X, nbunits=512, kernel_size=9, kernel_regularizer=l2(l2_rate), padding='same')	X = AveragePooling1D(pool_size=2, strides=2, padding='valid')(X)	X = Dropout(dropout_rate)(X)		#-- Flatten + 	1 FC layers	X = GlobalAveragePooling1D()(X)	for add in range(nb_fc):			X = fc_bn_relu_drop(X, nbunits=nbunits_fc, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)			#-- SOFTMAX layer	out = softmax(X, nbclasses, kernel_regularizer=l2(l2_rate))			# Create model.	return Model(inputs = X_input, outputs = out, name='Archi_3CONV2AP_1FC256_GAP_f33_17_9fd')	#----------------------------------------------------------------------- 
开发者ID:charlotte-pel,项目名称:temporalCNN,代码行数:43,代码来源:architecture_pooling.py


示例23: Archi_3CONV2AP_1FC256_GAP_f9_5_3fd

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalAveragePooling1D [as 别名]def Archi_3CONV2AP_1FC256_GAP_f9_5_3fd(X, nbclasses):		#-- get the input sizes	m, L, depth = X.shape	input_shape = (L,depth)		#-- parameters of the architecture	l2_rate = 1.e-6	dropout_rate = 0.5	nb_conv = 3	nb_fc= 1	nbunits_fc = 256 #-- will be double		# Define the input placeholder.	X_input = Input(input_shape)			#-- nb_conv CONV layers	X = conv_bn_relu(X_input, nbunits=512, kernel_size=9, kernel_regularizer=l2(l2_rate), padding='same')	X = AveragePooling1D(pool_size=2, strides=2, padding='valid')(X)	X = Dropout(dropout_rate)(X)	X = conv_bn_relu(X, nbunits=512, kernel_size=5, kernel_regularizer=l2(l2_rate), padding='same')	X = AveragePooling1D(pool_size=2, strides=2, padding='valid')(X)	X = Dropout(dropout_rate)(X)	X = conv_bn_relu(X, nbunits=512, kernel_size=3, kernel_regularizer=l2(l2_rate), padding='same')	X = AveragePooling1D(pool_size=2, strides=2, padding='valid')(X)	X = Dropout(dropout_rate)(X)		#-- Flatten + 	1 FC layers	X = GlobalAveragePooling1D()(X)	for add in range(nb_fc):			X = fc_bn_relu_drop(X, nbunits=nbunits_fc, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)			#-- SOFTMAX layer	out = softmax(X, nbclasses, kernel_regularizer=l2(l2_rate))			# Create model.	return Model(inputs = X_input, outputs = out, name='Archi_3CONV2AP_1FC256_GAP_f9_5_3fd')		#----------------------------------------------------------------------- 
开发者ID:charlotte-pel,项目名称:temporalCNN,代码行数:41,代码来源:architecture_pooling.py


示例24: Archi_3CONV2AP_1FC256_GAP_f5_3_1fd

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalAveragePooling1D [as 别名]def Archi_3CONV2AP_1FC256_GAP_f5_3_1fd(X, nbclasses):		#-- get the input sizes	m, L, depth = X.shape	input_shape = (L,depth)		#-- parameters of the architecture	l2_rate = 1.e-6	dropout_rate = 0.5	nb_conv = 3	nb_fc= 1	nbunits_fc = 256 #-- will be double		# Define the input placeholder.	X_input = Input(input_shape)			#-- nb_conv CONV layers	X = conv_bn_relu(X_input, nbunits=512, kernel_size=5, kernel_regularizer=l2(l2_rate), padding='same')	X = AveragePooling1D(pool_size=2, strides=2, padding='valid')(X)	X = Dropout(dropout_rate)(X)	X = conv_bn_relu(X, nbunits=768, kernel_size=3, kernel_regularizer=l2(l2_rate), padding='same')	X = AveragePooling1D(pool_size=2, strides=2, padding='valid')(X)	X = Dropout(dropout_rate)(X)	X = conv_bn_relu(X, nbunits=1024, kernel_size=1, kernel_regularizer=l2(l2_rate), padding='same')	X = Dropout(dropout_rate)(X)		#-- Flatten + 	1 FC layers	X = GlobalAveragePooling1D()(X)	for add in range(nb_fc):			X = fc_bn_relu_drop(X, nbunits=nbunits_fc, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)			#-- SOFTMAX layer	out = softmax(X, nbclasses, kernel_regularizer=l2(l2_rate))			# Create model.	return Model(inputs = X_input, outputs = out, name='Archi_3CONV2AP_1FC256_GAP_f5_3_1fd')		#----------------------------------------------------------------------- 
开发者ID:charlotte-pel,项目名称:temporalCNN,代码行数:40,代码来源:architecture_pooling.py


示例25: __call__

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalAveragePooling1D [as 别名]def __call__(self, inputs):        x = inputs[0]        kernel_regularizer = kr.L1L2(l1=self.l1_decay, l2=self.l2_decay)        x = kl.Conv1D(128, 11,                      name='conv1',                      kernel_initializer=self.init,                      kernel_regularizer=kernel_regularizer)(x)        x = kl.BatchNormalization(name='bn1')(x)        x = kl.Activation('relu', name='act1')(x)        x = kl.MaxPooling1D(2, name='pool1')(x)        # 124        x = self._res_unit(x, [32, 32, 128], stage=1, block=1, stride=2)        x = self._res_unit(x, [32, 32, 128], stage=1, block=2)        # 64        x = self._res_unit(x, [64, 64, 256], stage=2, block=1, stride=2)        x = self._res_unit(x, [64, 64, 256], stage=2, block=2)        # 32        x = self._res_unit(x, [128, 128, 512], stage=3, block=1, stride=2)        x = self._res_unit(x, [128, 128, 512], stage=3, block=2)        # 16        x = self._res_unit(x, [256, 256, 1024], stage=4, block=1, stride=2)        x = kl.GlobalAveragePooling1D()(x)        x = kl.Dropout(self.dropout)(x)        return self._build(inputs, x) 
开发者ID:cangermueller,项目名称:deepcpg,代码行数:33,代码来源:dna.py


示例26: __call__

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalAveragePooling1D [as 别名]def __call__(self, inputs):        x = self._merge_inputs(inputs)        shape = getattr(x, '_keras_shape')        replicate_model = self._replicate_model(kl.Input(shape=shape[2:]))        x = kl.TimeDistributed(replicate_model)(x)        x = kl.GlobalAveragePooling1D()(x)        x = kl.Dropout(self.dropout)(x)        return self._build(inputs, x) 
开发者ID:cangermueller,项目名称:deepcpg,代码行数:12,代码来源:cpg.py


示例27: cnn_spatial_multi

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalAveragePooling1D [as 别名]def cnn_spatial_multi(self):        # shared cnn_spatial model        cnn_spatial = self.cnn_spatial()        cnn_spatial.load_weights(self.saved_weights)        for layer in cnn_spatial.layers:            layer.trainable = False        # building inputs and output        model = Sequential()        model.add(TimeDistributed((cnn_spatial), input_shape=self.input_shape_multi))        model.add(GlobalAveragePooling1D())        return model    # CNN model for the spatial stream 
开发者ID:wushidonguc,项目名称:two-stream-action-recognition-keras,代码行数:17,代码来源:spatial_validate_model.py


万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。